Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Optimizing Spark Assisted GCI Combustion with the Compression Ratio and Internal Exhaust Gas Recirculation (I-EGR) Strategies

2023-04-11
2023-01-0226
The combustion instability at low loads is one of the key technology risks that needs to be addressed with the development of gasoline compression ignition (GCI) engine. The misfires and partial burns due to combustion instability leads to excessive hydrocarbon (HC) and carbon monoxide (CO) emissions. This study aims to improve the combustion robustness and reduce the emissions at low loads. The GCI engine used in this study has unique hardware features of a spark plug placed adjacent to the centrally mounted gasoline direct injector and a shallow pent roof combustion chamber coupled with a bowl in piston geometry. The engine experiments were performed in a single cylinder GCI engine at 3 bar indicated mean effective pressure (IMEP) and 1500 rpm for certified gasoline with research octane number (RON) = 91.
Technical Paper

Experimental Investigations of Methane-Hydrogen Blended Combustion in a Heavy-Duty Optical Diesel Engine Converted to Spark Ignition Operation

2023-04-11
2023-01-0289
The global need for de-carbonization and stringent emission regulations are pushing the current engine research toward alternative fuels. Previous studies have shown that the uHC, CO, and CO2 emissions are greatly reduced and brake thermal efficiency increases with an increase in hydrogen concentration in methane-hydrogen blends for the richer mixture compositions. However, the combustion suffers from high NOx emissions. While these trends are well established, there is limited information on a detailed optical study on the effect of air-excess ratio for different methane-hydrogen mixtures. In the present study, experimental investigations of different methane-hydrogen blends between 0 and 100% hydrogen concentration by volume for the air-excess ratio of 1, 1.4, 1.8, and 2.2 were conducted in a heavy-duty optical diesel engine converted to spark-ignition operation. The engine was equipped with a flat-shaped optical piston to allow bottom-view imaging of the combustion chamber.
Technical Paper

Preheated Liquid Fuel Injection Concept for Lean Pre-chamber Combustion

2023-04-11
2023-01-0259
The pre-chamber combustion (PCC) concept is a proven lean or diluted combustion technique for internal combustion engines with benefits in engine efficiency and reduced NOx emissions. The engine lean operation limit can be extended by supplying auxiliary fuel into the pre-chamber and thereby, achieving mixture stratification inside the pre-chamber over the main chamber. Introducing liquid fuels into the pre-chambers is challenging owing to the small form factor of the pre-chamber. With a conventional injector, the fuel penetrates in liquid form and impinges on the pre-chamber walls, which leads to increased unburned hydrocarbon emissions from the pre-chamber. In this study, a prototype liquid fuel injector is introduced which preheats the fuel within a heated chamber fitted with an electrical heating element before injecting an effervescently atomized spray into the pre-chamber.
Technical Paper

Comparing Unburned Fuel Emission from a Pre-chamber Engine Operating on Alcohol Fuels using FID and FTIR Analyzers

2022-08-30
2022-01-1094
Typical automotive emission testing systems usually employ Flame Ionization Detection (FID) analyzers to measure unburned fuel species in the exhaust, but the technique is not suitable for engines operating on alcohol fuels. The FID method is not sensitive to measuring unburned alcohol fuels due to the presence of oxygen bonds in the fuel molecule. Other techniques, such as Fourier Transform Infrared (FTIR), can provide accurate unburned fuel measurements with alcohol fuel. However, these techniques are expensive and are less accessible compared to FID analyzers. In this study, the unburned fuel emissions from the engine exhaust were measured simultaneously with FID and FTIR analyzers, with the engine operating on pure alcohols, which are methanol, ethanol, and n-butanol. While most previous work focuses on stoichiometric air-fuel mixtures, a wide range of lean operating conditions between global-λ 1.6 to 2.8 will be tested in this study.
Journal Article

Jet Characteristics of a Narrow Throat Pre-Chamber and Influence on the Main-Chamber Combustion

2022-08-30
2022-01-1006
Lean combustion is one of the most applied methods to increase engine efficiency and maintain a good trade-off with engine emissions. The pre-chamber combustion (PCC) is one of the most promising combustion concepts to extend the lean operating limits of the engine. The Narrow throat pre-chamber has shown better lean limit extension compared to other ignition sources. The pre-chamber jets and the main-chamber combustion were studied in a Heavy-Duty optical engine using methane fuel. The tested conditions covered global excess air ratios (λ), between 1.9 to 2.3. The combustion process was recorded using three collection systems: (a) Natural Flame Luminosity (NFL) with a temporal resolution of 0.1 CAD; (b) OH* Chemiluminescence, and (c) CH* Chemiluminescence with a temporal resolution of 0.2 CAD for both. The propagating velocity of the reacting jets was studied using Combustion Image Velocimetry (CIV) based on bottom view images of the main chamber.
Technical Paper

Optical Diagnostics of Isobaric and Conventional Diesel Combustion in a Heavy-Duty Diesel Engine

2022-03-29
2022-01-0418
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve higher thermal efficiency while lowering heat transfer losses and nitrogen oxides (NOx). However, isobaric combustion suffers from higher soot emissions. While the aforementioned trends are well established, there is limited literature about the high-temperature reaction zones, the liquid-phase penetration distance, and the flame tip propagation velocity of isobaric combustion. In the present study, the line-of-sight integrated imaging of Mie-scattering, combustion luminosity, and CH* chemiluminescence were conducted in an optically accessible single-cylinder heavy-duty diesel engine. The engine was equipped with a flat-bowl-shaped optical piston to allow bottom-view imaging of the combustion chamber. The experiments were conducted using n-heptane fuel for CDC and isobaric combustion modes.
Technical Paper

Performance Analysis and In-Cylinder Visualization of Conventional Diesel and Isobaric Combustion in an Optical Diesel Engine

2021-09-05
2021-24-0040
Compared to conventional diesel combustion (CDC), isobaric combustion can achieve a similar or higher indicated efficiency, lower heat transfer losses, reduced nitrogen oxides (NOx) emissions; however, with a penalty of soot emissions. While the engine performance and exhaust emissions of isobaric combustion are well known, the overall flame development, in particular, the flow-field details within the flames are unclear. In this study, the performance analysis of CDC and two isobaric combustion cases was conducted, followed by high-speed imaging of Mie-scattering and soot luminosity in an optically accessible, single-cylinder heavy-duty diesel engine. From the soot luminosity imaging, qualitative flow-fields were obtained using flame image velocimetry (FIV). The peak motoring pressure (PMP) and peak cylinder pressure (PCP) of CDC are kept fixed at 50 and 70 bar, respectively.
Technical Paper

Flow-Field Analysis of Isobaric Combustion Using Multiple Injectors in an Optical Accessible Diesel Engine

2021-09-05
2021-24-0042
Isobaric combustion has shown the potential of improving engine efficiency by lowering the heat transfer losses. Previous studies have achieved isobaric combustion through multiple injections from a single central injector, controlling injection timing and duration of the injection. In this study, we employed three injectors, i.e. one centrally mounted (C) on the cylinder head and two side-injectors (S), slant-mounted on cylinder head protruding their nozzle tip near piston-bowl to achieve the isobaric combustion. This study visualized the flame development of isobaric combustion, linking flow-field details to the observed trends in engine efficiency and soot emissions. The experiments were conducted in an optically accessible single-cylinder heavy-duty diesel engine using n-heptane as fuel. Isobaric combustion, with a 50 bar peak pressure, was achieved with three different injection strategies, i.e. (C+S), (S+C), and (S+S).
Technical Paper

Conditional Moment Closure Approaches for Simulating Soot and NOx in a Heavy-Duty Diesel Engine

2021-09-05
2021-24-0041
A heavy-duty diesel engine (ETH-LAV single cylinder MTU396 heavy duty research engine) was simulated by RANS and advanced reacting flow models to gain insight into its soot and NOx emissions. Due to symmetry, a section of the engine containing a single injector-hole was simulated. Dodecane was used as a surrogate to emulate the evaporation properties of diesel and a 22-step reaction mechanism for n-heptane was used to describe combustion. The Conditional Moment Closure (CMC) method was used as the combustion model in two ways. In a more conventional modelling approach, CMC was fully interfaced with the CFD and a two-equation model was employed for determining soot while the extended Zeldovich mechanism was used for NOx. In a second approach called the Imperfectly Stirred Reactor (ISR) method, the CMC equation was integrated over space and the previous RANS-CMC solution was further analysed in a post-processing step with the focus on soot.
Technical Paper

Computational Investigation of the Effects of Injection Strategy and Rail Pressure on Isobaric Combustion in an Optical Compression Ignition Engine

2021-09-05
2021-24-0023
The high-pressure isobaric combustion has been proposed as the most suitable combustion mode for the double compre4ssion expansion engine (DCEE) concept. Previous experimental and simulation studies have demonstrated an improved efficiency compared to the conventional diesel combustion (CDC) engine. In the current study, isobaric combustion was achieved using a single injector with multiple injections. Since this concept involves complex phenomena such as spray to spray interactions, the computational models were extensively validated against the optical engine experiment data, to ensure high-fidelity simulations. The considered optical diagnostic techniques are Mie-scattering, fuel tracer planar laser-induced fluorescence (PLIF), and natural flame luminosity imaging. Overall, a good agreement between the numerical and experimental results was obtained.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Low Load Condition Using CFD

2021-04-06
2021-01-0440
The effects of intake pressure (Pin), start of injection (SOI), injection pressure (Pinj), injection split ratio (Qsplit), internal and external exhaust gas recirculation rates were varied to optimize several key parameters at a partially pre-mixed combustion low load/low speed condition using CFD. These include indicated specific fuel consumption (ISFC), combustion phasing (CA50), maximum rate of pressure rise (MRPR), maximum cylinder pressure (Pmax), indicated specific NOx (sNOx), indicated specific hydrocarbons (sHC) and Filter Smoke Number (FSN) emissions. Low-load point (6 bar indicated mean effective pressure (IMEP), 1500 revolutions per minute (RPM)) was selected where Pin varied between 1.25 and 1.5 bar, SOI between -100 and -10 crank angle degree (CAD) after top dead center (aTDC), Pinj between 100 and 200 bar, split ratio between 0 and 0.5, EGR between 0 and 45% and internal EGR measured by rebreathing valve height was varied between 0 and 4.5 mm.
Technical Paper

A Comprehensive Experimental Study to Measure Laminar and Turbulent Burning Velocity of Haltermann Gasoline with Ternary Additives (O3, H2, and CO)

2021-04-06
2021-01-0473
In this work, the effects of ozone, hydrogen, carbon monoxide, and exhaust gas recirculation (EGR) addition to Haltermann gasoline combustion were investigated. For these additives, laminar and turbulent flame speeds were experimentally determined using spherically propagating premixed flames in a constant volume combustion vessel. Two initial mixture pressures of Po = 1 and 5 bar, two initial mixture temperatures of 358 and 373 K and a range of equivalence ratios (Ф) from 0.5 to 1 were investigated. The additives were added as single, binary and ternary mixtures to Haltermann gasoline over a wide range of concentrations. For the stoichiometric mixture, the addition of 10% H2, 5% CO and 1000 ppm O3 shows remarkable enhancement (80%) in SL0compared to neat Haltermann gasoline. In addition, for this same blend, increasing the mixture initial temperature and pressure results in a significant increase in SL0compared to the neat gasoline.
Technical Paper

Parametric Study to Optimize Gasoline Compression Ignition Operation under Medium Load-Conditions

2021-04-06
2021-01-0460
Gasoline compression ignition (GCI) pertains to high efficiency lean burn compression ignition with gasoline fuels, where ignition is controlled by mixture’s auto-ignition chemistry as well as local mixture strength. The presented GCI combustion strategy is based on a multi-mode combustion strategy at various operating conditions. This study presents a part of work on the development of an optimum combustion strategy at medium loading condition for commercial gasoline fuel with research octane number (RON) = 91. The single cylinder engine with a compression ratio (CR) = 16 features a centrally mounted multi-hole injector with a spark plug at a distance from the injector under shallow pent-roof combustion chamber design. The design of combustion chamber and piston was previously optimized based on CFD numerical analysis.
Technical Paper

High-Speed Imaging of Main-Chamber Combustion of a Narrow Throat Pre-Chamber under Lean Conditions

2020-09-15
2020-01-2081
Pre-chamber combustion (PCC) allows an extension on the lean limit of an internal combustion engine (ICE). This combustion mode provides lower NOx emissions and shorter combustion durations that lead to a higher indicated efficiency. In the present work, a narrow throat pre-chamber was tested, which has a unique nozzle area distribution in two rows of six nozzle holes each. Tests were carried out in a modified heavy-duty engine for optical visualization. Methane was used as fuel for both the pre-chamber and the main chamber. Seven operating points were tested, including passive pre-chamber mode as a limit condition, to study the effect of pre- and main-chamber fuel addition on the pre-chamber jets and the main chamber combustion via chemiluminescence imaging. A typical cycle of one of the tested conditions is explained through the captured images. Observations of the typical cycle reveal a predominant presence of only six jets (from the lower row), with well-defined jet structures.
Technical Paper

Study of Effects of Deposit Formation on GDi Injector and Engine Performance

2020-09-15
2020-01-2099
Gasoline Direct Injection (GDI) vehicles now make up the majority of European new car sales and a significant share of the existing car parc. Despite delivering measurable engine efficiency benefits, GDI fuel systems are not without issues. Fuel injectors are susceptible to the formation of deposits in and around the injector nozzles holes. It is widely reported that these deposits can affect engine performance and that different fuels can alleviate the buildup of those deposits. This project aims to understand the underlying mechanisms of how deposit formation ultimately leads to a reduction in vehicle performance. Ten GDI fuel injectors, with differing levels of coking were taken from engine testing and consumer vehicles and compared using a range of imaging and engine tests. At the time of writing, a new GDI engine test is being developed by the Co-ordinating European Council (CEC) to be used by the fuel and fuel additive industry.
Technical Paper

A Demonstration of High Efficiency, High Reactivity Gasoline Compression Ignition Fuel in an On & Off Road Diesel Engine Application

2020-04-14
2020-01-1311
The regulatory requirements to reduce both greenhouse gases and exhaust gas pollutants from heavy duty engines are driving new perspectives on the interaction between fuels and engines. Fuels that reliefs the burden on engine manufacturers to reach these goals are of particular interest. A low carbon fuel with a higher volatility and heating value than diesel is one such fuel that reduces engine-out emissions and carbon footprint from the entire hydrocarbon lifecycle (well-to-wheel) and improves fuel efficiency, which is a main enabler for gasoline compression ignition (GCI) technology. The present study investigated the potential of GCI technology by evaluating the performance of a low carbon high efficiency, high reactivity gasoline fuel in Doosan’s 6L medium duty diesel engine.
Technical Paper

Effect of Pre-Chamber Enrichment on Lean Burn Pre-Chamber Spark Ignition Combustion Concept with a Narrow-Throat Geometry

2020-04-14
2020-01-0825
Pre-chamber spark ignition (PCSI) combustion is an emerging lean-burn combustion mode capable of extending the lean operation limit of an engine. The favorable characteristic of short combustion duration at the lean condition of PCSI results in high efficiencies compared to conventional spark ignition combustion. Since the engine operation is typically lean, PCSI can significantly reduce engine-out NOx emissions while maintaining short combustion durations. In this study, experiments were conducted on a heavy-duty engine at lean conditions at mid to low load. Two major studies were performed. In the first study, the total fuel energy input to the engine was fixed while the intake pressure was varied, resulting in varying the global excess air ratio. In the second study, the intake pressure was fixed while the amount of fuel was changed to alter the global excess air ratio.
Technical Paper

Isobaric Combustion for High Efficiency in an Optical Diesel Engine

2020-04-14
2020-01-0301
Isobaric combustion has been proven a promising strategy for high efficiency as well as low nitrogen oxides emissions, particularly in heavy-duty Diesel engines. Previous single-cylinder research engine experiments have, however, shown high soot levels when operating isobaric combustion. The combustion itself and the emissions formation with this combustion mode are not well understood due to the complexity of multiple injections strategy. Therefore, experiments with an equivalent heavy-duty Diesel optical engine were performed in this study. Three different cases were compared, an isochoric heat release case and two isobaric heat release cases. One of the isobaric cases was boosted to reach the maximum in-cylinder pressure of the isochoric one. The second isobaric case kept the same boost levels as the isochoric case. Results showed that in the isobaric cases, liquid fuel was injected into burning gases. This resulted in shorter ignition delays and thus a poor mixing level.
Technical Paper

Experimental Investigation of the Compression Ignition Process of High Reactivity Gasoline Fuels and E10 Certification Gasoline using a High-Pressure Direct Injection Gasoline Injector

2020-04-14
2020-01-0323
Gasoline compression ignition (GCI) technology shows the potential to obtain high thermal efficiencies while maintaining low soot and NOx emissions in light-duty engine applications. Recent experimental studies and numerical simulations have indicated that high reactivity gasoline-like fuels can further enable the benefits of GCI combustion. However, there is limited empirical data in the literature studying the gasoline compression ignition process at relevant in-cylinder conditions, which are required for further optimizing combustion system designs. This study investigates the temporal and spatial evolution of the compression ignition process of various high reactivity gasoline fuels with research octane numbers (RON) of 71, 74 and 82, as well as a conventional RON 97 E10 gasoline fuel. A ten-hole prototype gasoline injector specifically designed for GCI applications capable of injection pressures up to 450 bar was used.
Technical Paper

Optical Study on the Fuel Spray Characteristics of the Four-Consecutive-Injections Strategy Used in High-Pressure Isobaric Combustion

2020-04-14
2020-01-1129
High-pressure isobaric combustion used in the double compression expansion engine (DCEE) concept was proposed to obtain higher engine brake thermal efficiency than the conventional diesel engine. Experiments on the metal engines showed that four consecutive injections delivered by a single injector can achieve isobaric combustion. Improved understanding of the detailed fuel-air mixing with multiple consecutive injections is needed to optimize the isobaric combustion and reduce engine emissions. In this study, we explored the fuel spray characteristics of the four-consecutive-injections strategy using high-speed imaging with background illumination and fuel-tracer planar laser-induced fluorescence (PLIF) imaging in a heavy-duty optical engine under non-reactive conditions. Toluene of 2% by volume was added to the n-heptane and served as the tracer. The fourth harmonic of a 10 Hz Nd:YAG laser was applied for the excitation of toluene.
X