Refine Your Search

Search Results

Viewing 1 to 13 of 13
Technical Paper

Isotopic Tracing of Fuel Carbon in the Emissions of a Compression-Ignition Engine Fueled with Biodiesel Blends

Experimental tests were conducted on a Cummins B5.9 direct-injected diesel engine fueled with biodiesel blends. 20% and 50% blend levels were tested, as was 100% (neat) biodiesel. Emissions of particulate matter (PM), nitrogen oxides (NOx), hydrocarbons (HC) and CO were measured under steady-state operating conditions. The effect of biodiesel on total PM emissions was mixed; however, the contribution of the volatile organic fraction to total PM was greater for higher biodiesel blend levels. When only non-volatile PM mass was considered, reductions were observed for the biodiesel blends as well as for neat biodiesel. The biodiesel test fuels increased NOx, while HC and CO emissions were reduced. PM collected on quartz filters during the experimental runs were analyzed for carbon-14 content using accelerator mass spectrometry (AMS).
Technical Paper

Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver

This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine.
Technical Paper

Piston-Liner Crevice Geometry Effect on HCCI Combustion by Multi-Zone Analysis

A multi-zone model has been developed that accurately predicts HCCI combustion and emissions. The multi-zone methodology is based on the observation that turbulence does not play a direct role on HCCI combustion. Instead, chemical kinetics dominates the process, with hotter zones reacting first, and then colder zones reacting in rapid succession. Here, the multi-zone model has been applied to analyze the effect of piston crevice geometry on HCCI combustion and emissions. Three different pistons of varying crevice size were analyzed. Crevice sizes were 0.26, 1.3 and 2.1 mm, while a constant compression ratio was maintained (17:1). The results show that the multi-zone model can predict pressure traces and heat release rates with good accuracy. Combustion efficiency is also predicted with good accuracy for all cases, with a maximum difference of 5% between experimental and numerical results.
Technical Paper

Emissions from a Cummins B5.9 Diesel Engine Fueled with Oxygenate-in-Diesel Blends

Engine fuel tests were conducted with an oxygenated fuel called Cetaner blended with conventional diesel fuel to determine its emissions reduction potential. Blends of 10, 20, 30 and 40% by volume were investigated. The test engine was a 1993 Cummins B5.9 diesel rated at 175 hp. Emissions of particulate matter (PM), oxides of nitrogen (NOx), hydrocarbons (HC) and carbon monoxide (CO), along with brake specific fuel consumption (bsfc) were measured during steady state operation at eight engine speed-load conditions. Soluble organic fraction (SOF) analysis was also carried out on the collected PM filter samples. The experimental results showed that the Cetaner blends can substantially reduce PM emissions. Reductions were observed in both the organic and inorganic fractions of the collected PM. On a modal-averaged basis, increasing Cetaner blend levels yielded greater PM reductions, with reductions of about 3-4% observed for each 1% of oxygen blended to the fuel by mass.
Technical Paper

Nanorobots for Mars EVA Repair

Current trends in technology indicate that nanometer-scale devices will be feasible within two decades. It is likely that NASA will attempt a manned Mars mission within the next few decades. Manned Mars activities will be relatively labor-intensive, presenting significant risk of damage to the Marssuit. We have investigated two possible architectures for nanotechnology applied to the problem of damage during Mars surface activity. Nanorobots can be used to actively repair damaged suit materials while an astronaut is in the field, reducing the need to return immediately to a pressurized area. Assembler nanorobots reproduce both themselves and the more specialized Marssuit Repair Nanorobots (MRN). MRN nanorobots operate as space-filling polyhedra to repair damage to a Marssuit. Both operate with reversible mechanical logic, though only assemblers utilize chemical data storage.
Technical Paper

Dynamics of Combustion in a Diesel Engine Under the Influence of Air/Fuel Ratio

The dynamic stage of combustion - the intrinsic process for pushing the compression polytrope away from the expansion polytrope to generate the indicator work output of a piston engine - was studied to reveal the influence of the air/fuel ratio on the effectiveness with which the fuel was utilized. The results of tests carried out for this purpose, using a 12 liter diesel engine, were reported last year [SAE 1999-01-0517]. Presented here is an analytic interpretation of the data obtained for part-load operation at 1200 and 1800 rpm. A solution is thus provided for an inverse problem: deduction of information on the dynamic features of the exothermic process of combustion from measured pressure record. Provided thereby, in particular, is information on the effectiveness with which fuel was utilized in the course of this process - a parameter reflecting the effect of energy lost by heat transfer to the walls.
Technical Paper

Refinement of Heat Release Analysis

The refinement of heat release analysis stems from the recognition that a combustion system is intrinsically non-linear. Thus, as appropriate for such an entity, its properties are expressed in terms of a thermochemical phase (or state) space, of which the thermodynamic aspects are exposed on a so-called Le Chatelier diagram, providing the fundamental background for the development of micro-electronic control to attain the most effective utilization of fuel. Implementation of this method of approach is illustrated by the analysis of the exothermic process taking place in two typical internal combustion engines, spark-ignition and diesel.
Technical Paper

Oxides of Nitrogen in the Combustion Products of an Ammonia Fueled Reciprocating Engine

A single cylinder investigation was conducted to determine concentration of oxides of nitrogen resulting from combustion of ammonia and air in a spark ignition engine over a range of fuel-air ratios typical of normal engine operation with ammonia. Nitric oxide concentrations exceeded that with hydrocarbons. Spectroscopic observations during the expansion process gave concentrations in some instances an order of magnitude greater than exhaust gas determinations. The results imply a different mechanism for nitric oxide formation with ammonia fuel than with hydrocarbons and that some equilibrating process may take place between combustion and exhaust to reduce otherwise even greater than measured exhaust gas concentrations.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
Technical Paper

Gas Turbine Combustion of Ammonia

A theoretical and experimental study was undertaken to establish whether or not parametric correlations could be satisfactorily applied to combustion of ammonia in gas turbine combustors. It was found that a usual parameter of the form I (Re)0.7 was satisfactory for establishing blowout limits in modeling. However, the attainable values of chemical loading I were at least an order of magnitude less than those attainable with hydrocarbon fuels.
Technical Paper

Ammonia as a Spark Ignition Engine Fuel: Theory and Application

Anhydrous ammonia has been demonstrated to operate successfully as a fuel for spark ignition engines. Principal requirements are that it be introduced in the vapor phase and partly decomposed to hydrogen and nitrogen. Spark timing for maximum performance must be advanced slightly for ammonia but sensitivity to spark timing is little greater than with hydrocarbons. Increasing the cylinder wall temperature aids in effecting successful and reliable operation. The maximum theoretically possible indicated output using ammonia vapor is about 77% of that with hydrocarbon. Specific fuel consumption increase twofold at maximum power and 2-1/2 fold at maximum economy when using ammonia as a replacement for hydrocarbon.
Technical Paper

Comparative Performance of Alcohol and Hydrocarbon Fuels

Three factors are of consequence when considering the comparative performance of alcohols and hydrocarbons as spark ignition engine fuels. These are: relative amounts of products of combustion produced per unit of inducted charge, energy inducted per unit of charge, and latent heat differences among the fuels. Simple analysis showed significant increases in output can be expected from the use of methyl alcohol as compared to hydrocarbon and somewhat lesser improvement can be expected from ethyl alcohol. Attendant increases in fuel consumption, disproportionate to the power increase, can also be predicted. More sophisticated analysis, based upon thermodynamic charts of combustion products, do not necessarily improve correspondence between prediction and engine results.
Technical Paper

Thermodynamic Properities of Octane and Air for Engine Performance Calculations

A digital computer and special program were used, along with new thermodynamic data, to recalculate and extend the scope and range of the classic combustion gas charts of Hottel and co-workers. A series of hydrocarbon and nonhydrocarbon fuels was treated over a range of fuel-air ratios, with temperatures extended up to 7200 R and pressures up to 15,000 psia. This, the first paper of a series, incorporates the resulting charts for isooctane at four mixture ratios ranging from 20% lean to 40% rich. Auxiliary charts for inducted mixture properties determination and a set of sample calculations are also included.