Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Effect of Mixing on Hydrocarbon and Carbon Monoxide Emissions Prediction for Isooctane HCCI Engine Combustion Using a Multi-zone Detailed Kinetics Solver

2003-05-19
2003-01-1821
This research investigates how the handling of mixing and heat transfer in a multi-zone kinetic solver affects the prediction of carbon monoxide and hydrocarbon emissions for simulations of HCCI engine combustion. A detailed kinetics multi-zone model is now more closely coordinated with the KIVA3V computational fluid dynamics code for simulation of the compression and expansion processes. The fluid mechanics is solved with high spatial and temporal resolution (40,000 cells). The chemistry is simulated with high temporal resolution, but low spatial resolution (20 computational zones). This paper presents comparison of simulation results using this enhanced multi-zone model to experimental data from an isooctane HCCI engine.
Technical Paper

An Investigation of the Effect of Fuel-Air Mixedness on the Emissions from an HCCI Engine

2002-05-06
2002-01-1758
This research work has focused on measuring the effect of fuel/air mixing on performance and emissions for a homogeneous charge compression ignition engine running on propane. A laser instrument with a high-velocity extractive probe was used to obtain time-resolved measurements of the fuel concentration both at the intake manifold and from the cylinder for different levels of fuel-air mixing. Cylinder pressure and emissions measurements have been performed at these mixing levels. From the cylinder pressure measurements, the IMEP and peak cylinder pressure were found. The fuel-air mixing level was changed by adding the fuel into the intake system at different distances from the intake valve (40 cm and 120 cm away). It was found that at the intake manifold, the fuel and air were better mixed for the 120 cm fuel addition location than for the 40 cm location.
Technical Paper

The Effect of Oxygenates on Diesel Engine Particulate Matter

2002-05-06
2002-01-1705
A summary is presented of experimental results obtained from a Cummins B5.9 175 hp, direct-injected diesel engine fueled with oxygenated diesel blends. The oxygenates tested were dimethoxy methane (DMM), diethyl ether, a blend of monoglyme and diglyme, and ethanol. The experimental results show that particulate matter (PM) reduction is controlled largely by the oxygen content of the blend fuel. For the fuels tested, the effect of chemical structure was observed to be small. Isotopic tracer tests with ethanol blends reveal that carbon from ethanol does contribute to soot formation, but is about 50% less likely to form soot when compared to carbon from the diesel portion of the fuel. Numerical modeling was carried out to investigate the effect of oxygenate addition on soot formation. This effort was conducted using a chemical kinetic mechanism incorporating n-heptane, DMM and ethanol chemistry, along with reactions describing soot formation.
Technical Paper

1.9-Liter Four-Cylinder HCCI Engine Operation with Exhaust Gas Recirculation

2001-05-07
2001-01-1894
We present the effect of EGR, at a set fuel flow rate and intake temperature, on the operating parameters of timing of combustion, duration of combustion, power output, thermal efficiency, and NOx emission; which is remarkably low. We find that addition of EGR at constant inlet temperature and constant fuel flow rate has little effect on HCCI parameter of start of combustion (SOC). However, burn duration is highly dependent on the amount of EGR inducted. The experimental setup at UC Berkeley uses a 1.9-liter 4-cylinder diesel engine with a compression ratio of 18.8:1 (offered on a 1995 VW Passat TDI). The engine was converted to run in HCCI mode by addition of an 18kW air pre-heater installed in the intake system. Pressure traces were obtained using four water-cooled quartz pressure transducers, which replaced the Diesel fuel injectors. Gaseous fuel (propane or butane) flowed steadily into the intake manifold.
Technical Paper

Nanorobots for Mars EVA Repair

2000-07-10
2000-01-2478
Current trends in technology indicate that nanometer-scale devices will be feasible within two decades. It is likely that NASA will attempt a manned Mars mission within the next few decades. Manned Mars activities will be relatively labor-intensive, presenting significant risk of damage to the Marssuit. We have investigated two possible architectures for nanotechnology applied to the problem of damage during Mars surface activity. Nanorobots can be used to actively repair damaged suit materials while an astronaut is in the field, reducing the need to return immediately to a pressurized area. Assembler nanorobots reproduce both themselves and the more specialized Marssuit Repair Nanorobots (MRN). MRN nanorobots operate as space-filling polyhedra to repair damage to a Marssuit. Both operate with reversible mechanical logic, though only assemblers utilize chemical data storage.
Technical Paper

Dynamics of Combustion in a Diesel Engine Under the Influence of Air/Fuel Ratio

2000-03-06
2000-01-0203
The dynamic stage of combustion - the intrinsic process for pushing the compression polytrope away from the expansion polytrope to generate the indicator work output of a piston engine - was studied to reveal the influence of the air/fuel ratio on the effectiveness with which the fuel was utilized. The results of tests carried out for this purpose, using a 12 liter diesel engine, were reported last year [SAE 1999-01-0517]. Presented here is an analytic interpretation of the data obtained for part-load operation at 1200 and 1800 rpm. A solution is thus provided for an inverse problem: deduction of information on the dynamic features of the exothermic process of combustion from measured pressure record. Provided thereby, in particular, is information on the effectiveness with which fuel was utilized in the course of this process - a parameter reflecting the effect of energy lost by heat transfer to the walls.
Technical Paper

Refinement of Heat Release Analysis

1997-02-24
970538
The refinement of heat release analysis stems from the recognition that a combustion system is intrinsically non-linear. Thus, as appropriate for such an entity, its properties are expressed in terms of a thermochemical phase (or state) space, of which the thermodynamic aspects are exposed on a so-called Le Chatelier diagram, providing the fundamental background for the development of micro-electronic control to attain the most effective utilization of fuel. Implementation of this method of approach is illustrated by the analysis of the exothermic process taking place in two typical internal combustion engines, spark-ignition and diesel.
Technical Paper

Thermodynamic Properties of Methane and Air, and Propane and Air for Engine Performance Calculations

1967-02-01
670466
This is a continuation of the presentation of thermodynamic properties of selected fuel-air mixtures in chart form, suitable for utilization in engine performance calculations. Methane and propane, representative of natural gas and LPG are the two fuels considered. Using these charts, comparisons are made between the performance to be expected with these gaseous fuels compared to octane, as representative of gasoline. Reduced engine power is predicted and this is confirmed by experience of other investigators.
Technical Paper

Gas Turbine Combustion of Ammonia

1967-02-01
670938
A theoretical and experimental study was undertaken to establish whether or not parametric correlations could be satisfactorily applied to combustion of ammonia in gas turbine combustors. It was found that a usual parameter of the form I (Re)0.7 was satisfactory for establishing blowout limits in modeling. However, the attainable values of chemical loading I were at least an order of magnitude less than those attainable with hydrocarbon fuels.
Technical Paper

Thermodynamic Properities of Octane and Air for Engine Performance Calculations

1963-01-01
630075
A digital computer and special program were used, along with new thermodynamic data, to recalculate and extend the scope and range of the classic combustion gas charts of Hottel and co-workers. A series of hydrocarbon and nonhydrocarbon fuels was treated over a range of fuel-air ratios, with temperatures extended up to 7200 R and pressures up to 15,000 psia. This, the first paper of a series, incorporates the resulting charts for isooctane at four mixture ratios ranging from 20% lean to 40% rich. Auxiliary charts for inducted mixture properties determination and a set of sample calculations are also included.
X