Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

The influence of damper properties on vehicle dynamic behavior

2000-06-12
2000-05-0231
The detailed, dynamic properties of dampers are known to influence substantially some of the subtle - and yet nevertheless hugely important - refinement aspects or ride and handling. Despite this, most of the current work on damping characterization relies on steady-state properties and transient aspects are left largely to subjective in-car assessments by test drivers. The paper describes research work aimed at improving our understanding of the transient properties of dampers through mathematical modeling and then attempting to link these properties to detailed aspects of the vehicle ride and handling. Further experimental work is planned to follow later. From a moderately complex mathematical model of a damper, an attempt is made to identify (a) those transient characteristics which are important in influencing the vehicle responses perceived by test drivers, and (b) which design features of the damper control those characteristics.
Technical Paper

Development and Analysis of a Prototype Controllable Suspension

1997-08-06
972691
Persisting concerns regarding ride comfort, directional stability and more recently road damage have caused the manufacturers of commercial vehicles to consider controllable suspension systems. An electronically controllable adaptive suspension that comprises a variable spring rate system, switchable damping and load levelling is proposed as a cost-effective solution. This paper describes the aforementioned system and provides an outline of the design scheme for a prototype system; practical issues such as system configuration/detail, control system requirements, etc., are discussed. The system is evaluated analytically and both ride and handling modes are examined. In conclusion, performance capabilities are defined and cost-benefit issues addressed.
Technical Paper

Coupling of Driveline and Body Vibrations in Trucks

1996-10-01
962206
Torsional motion of a truck driveline system is coupled with other motions of its components. In this paper, a comprehensive model of the truck driveline and body for vibration analysis was developed. Coupling of the torsional vibration of the truck driveline system with the body fore-aft and vertical vibrations was investigated. A mathematical model, including the torsional vibration of the driveline system and the whole body vibrations of the truck, was constructed. The driveline system was modelled as a set of inertia discs linked together by massless springs and the tyre was represented as having massless circumferential band which is elastically connected to the carcass with the bands being subject to longitudinal forces at the road surface. System behaviour at steady and transient runs was developed.
X