Refine Your Search

Topic

Search Results

Technical Paper

The Effects of Corrosion on Particle Emissions from a Grey Cast Iron Brake Disc

2022-09-19
2022-01-1178
Reducing exhaust emissions has been a major focus of research for a number of years since internal combustion engines (ICE) contribute to a large number of harmful particles entering the environment. As a way of reducing emissions and helping to tackle climate change, many countries are announcing that they will ban the sale of new ICE vehicles soon. Electrical vehicles (EVs) represent a popular alternative vehicle propulsion system. However, although they produce zero exhaust emissions, there is still concern regarding non-exhaust emission, such as brake dust, which can potentially cause harm to human health and the environment. Despite EVs primarily using regenerative braking, they still require friction brakes as a backup as and when required. Moreover, most EVs continue to use the traditional grey cast iron (GCI) brake rotor, which is heavy and prone to corrosion, potentially exacerbating brake wear emissions.
Technical Paper

Energy Assessment of the Electric Powertrain System of a Formula Student Electric Race Car

2022-08-30
2022-01-1124
While the shift to vehicle electrification plays a pivotal role in governments’ targets towards carbon neutrality, there exists certain technical challenges that need to be addressed. The motorsport car industry is also affected by this policy with the electric cars being included in the formula SAE and formula E competitions as one of the main categories. Moreover, there is a gap in the literature in energy assessment of the electric powertrain used in Formula SAE (FSAE) and Formula Student (FS) cars. In this paper, a Formula Student electric car powertrain was designed as a case study for energy analysis. The proposed electric powertrain is equipped with a four-wheel drive system. The vehicle was modelled in AVL CRUISE M software using technical and measured lab data as input parameters. Simulations were run in a transient driving cycle for a real circuit layout used in previous SAE competitions.
Technical Paper

Combustion and Emissions Performance of Simulated Syngas/Diesel Dual Fuels in a CI Engine

2022-08-30
2022-01-1051
Small diesel engines are a common primer for micro and mini-grid systems, which can supply affordable electricity to rural and remote areas, especially in developing countries. These diesel generators have no exhaust after-treatment system thus exhaust emissions are high. This paper investigates the potential of introducing simulated synthetic gas (syngas) to diesel in a small diesel engine to explore the opportunities of widening fuel choices and reducing emissions using a 5.7kW single cylinder direct injection diesel generator engine. Three different simulated syngas blends (with varying hydrogen content) were prepared to represent the typical syngas compositions produced from downdraft gasification and were injected into the air inlet. In-cylinder pressure, ignition delay, premixed combustion, combustion stability, specific energy consumption (SEC), and gaseous and particle emissions were measured at various power settings and mixing ratios.
Technical Paper

Particle Emissions and Size Distribution across the DPF from a Modern Diesel Engine Using Pure and Blended GTL Fuels

2020-09-15
2020-01-2059
A Gas to liquid (GTL) fuel was investigated for its combustion and emission performance in an IVECO EURO5 DI diesel engine with a DOC (Diesel Oxidation Catalyst) and DPF (Diesel Particle Filter) installed. The composition of the GTL fuel was analyzed by GC-MS (gas chromatography-mass spectrometry) and showed the carbon distribution of 8-20. Selected physical properties such as density and distillation were measured. The GTL fuel was blended with standard fossil diesel fuel by ratios of diesel/GTL: 100/0, 70/30, 50/50, 30/70 and 0/100. The engine was equipped with a pressure transducer and crank angle encoder in one of its cylinders. The properties of ignition delay and maximum in-cylinder pressure were studied as a function of fraction of the GTL fuel. Particle emissions were measured using DMS500 particle size instrument at both upstream (engine out) and downstream of the DPF (DPF out) for particle number concentrations and size distribution from 5 nm to 1000 nm.
Technical Paper

A New Simulation Approach of Estimating the Real-World Vehicle Performance

2020-04-14
2020-01-0370
Due to the variability of real traffic conditions for vehicle testing, real-world vehicle performance estimation using simulation method become vital. Especially for heavy duty vehicles (e.g. 40 t trucks), which are used for international freight transport, real-world tests are difficult, complex and expensive. Vehicle simulations use mathematical methods or commercial software, which take given driving cycles as inputs. However, the road situations in real driving are different from the driving cycles, whose speed profiles are obtained under specific conditions. In this paper, a real-world vehicle performance estimation method using simulation was proposed, also it took traffic and real road situations into consideration, which made it possible to investigate the performance of vehicles operating on any roads and traffic conditions. The proposed approach is applicable to all kind of road vehicles, e.g. trucks, buses, etc. In the method, the real-road network includes road elevation.
Journal Article

Investigation of Combustion and Emission Performance of Hydrogenated Vegetable Oil (HVO) Diesel

2017-10-08
2017-01-2400
Hydrogenated Vegetable Oil (HVO) diesel fuels have the potential to provide a reduced carbon footprint for diesel engines and reduce exhaust emissions. Therefore, it is a strong candidate for transport and diesel powered machines including electricity generators and other off-road machines. In this research, a waste cooking oil derived HVO diesel was investigated for its combustion and emission performance including ignition delays, size segregated particulate number emissions and gaseous emissions. The results were compared to the standard petroleum diesel. A EURO5 emission compliant three litre, direct injection, intercooled IVECO diesel engine equipped with EGR was used which has a maximum power output of 96kW. The engine was equipped with an integrated DOC and DPF aftertreatment system. Both the upstream and downstream of the aftertreatment emissions were measured. The tests were conducted at different RPM and loads at steady state conditions.
Technical Paper

Motion Cueing Evaluation of Off-Road Heavy Vehicle Handling

2016-09-27
2016-01-8041
Motion cueing algorithms can improve the perceived realism of a driving simulator, however, data on the effects on driver performance and simulator sickness remain scarce. Two novel motion cueing algorithms varying in concept and complexity were developed for a limited maneuvering workspace, hexapod/Stuart type motion platform. The RideCue algorithm uses a simple swing motion concept while OverTilt Track algorithm uses optimal pre-positioning to account for maneuver characteristics for coordinating tilt adjustments. An experiment was conducted on the US Army Tank Automotive Research, Development and Engineering Center (TARDEC) Ride Motion Simulator (RMS) platform comparing the two novel motion cueing algorithms to a pre-existing algorithm and a no-motion condition.
Technical Paper

Emissions from a HGV Using Used Cooking Oil as a Fuel under Real World Driving Conditions

2015-04-14
2015-01-0905
To maximize CO2 reduction, refined straight used cooking oils were used as a fuel in Heavy Goods Vehicles (HGVs) in this research. The fuel is called C2G Ultra Biofuel (C2G: Convert to Green Ltd) and is a fully renewable fuel made as a diesel replacement from processed used cooking oil, used directly in diesel engines specifically modified for this purpose. This is part of a large demonstration project involving ten 44-tonne trucks using C2G Ultra Biofuel as a fuel to partially replace standard diesel fuels. A dual fuel tank containing both diesel and C2G Ultra Biofuel and an on-board fuel blending system-Bioltec system was installed on each vehicle, which is able to heat the C2G Ultra Biofuel and automatically determine the required blending ratio of diesel and C2G Ultra Biofuel according to fuel temperature and engine load. The engine was started with diesel and then switched to C2G Ultra Biofuel under appropriate conditions.
Technical Paper

Piston Assembly Friction Losses: Comparison of Measured and Predicted Data

2006-04-03
2006-01-0426
The main objective of this research was to validate the friction prediction capability of Ricardo Software products PISDYN and RINGPAK by comparing predictions with measured piston assembly friction force. The measurements were made by the University of Leeds on a single cylinder Ricardo Hydra gasoline engine using an IMEP method developed by the University. This technique involves the use of advanced instrumentation to make accurate measurements of cylinder pressure, crankshaft angular velocity and connecting rod strain. These measured values are used to calculate the forces acting on the piston assembly including the friction force. PISDYN was used by Ricardo to calculate friction force at the interface between the piston skirt and cylinder liner. The model used includes the effects of secondary dynamics, partial lubrication and piston skirt profile. RINGPAK was used by Ricardo to calculate the friction force at each piston ring.
Technical Paper

Design of a Robust Tyre Force Estimator Using an Extended Kalman Filter

2005-04-11
2005-01-0402
This paper will present a method of estimating tyre friction force using an extended Kalman filter (EKF). A review of current and proposed methods for tyre force estimation from the literature will be given. The EKF developed will estimate vehicle motions and tyre forces as state estimates from a noisy measurement set. The tyre forces will be compared to those from a high order vehicle model with non-linear tyres, which is subjected to the same tests as the measured vehicle, in order to validate the estimated forces. The robustness of the estimator to noise and input errors will be tested. The ultimate aim of this work is to provide estimates of tyre forces to a controller such as ABS or TCS.
Technical Paper

Integration of Active Suspension and Active Driveline to Ensure Stability While Improving Vehicle Dynamics

2005-04-11
2005-01-0414
Most active control systems developed for passenger vehicles are developed as safety systems. These control systems usually focus on improving vehicle stability and safety while ignoring the effects on the vehicle driveability. While stability is the primary concern of these control systems the driveability of the vehicle is also an important consideration. An example of compromised driveability in a stability control system is brake based active yaw control. Brake based systems are very effective at stability control but can have a negative impact on the longitudinal dynamics of a vehicle. The objective of the vehicle control systems developed for the future will be to preserve vehicle driveability while ensuring the stability of the vehicle. In this work, active suspension and active drivelines are developed as stability control systems that have a minimal impact on the driveability of the vehicle.
Technical Paper

Integration of Active Suspension and Active Driveline to Improve Vehicle Dynamics

2004-11-30
2004-01-3544
Many active control systems are developed as safety systems for passenger vehicles. These control systems usually focus on improving vehicle stability and safety while ignoring the effects on the vehicle driveability. In the motorsport environment, increased stability is desirable but not if the driveability of the vehicle is heavily compromised. In this work, active suspension and active drivelines are examined to improve vehicle dynamics and enhance driveability while maintaining stability. The active control systems are developed as separate driveability and stability controls and tested individually then integrated to create a multi-objective control system to improve both driveability and stability. The controllers are tested with standard vehicle manoeuvres.
Technical Paper

The Influence of Simulated Residual and NO Concentrations on Knock Onset for PRFs and Gasolines

2004-10-25
2004-01-2998
Modern engine developments result in very different gas pressure-temperature histories to those in RON/MON determination tests and strain the usefulness of those knock scales and their applicability in SI engine knock and HCCI autoignition onset models. In practice, autoignition times are complex functions of fuel chemistry and burning velocity (which affects pressure-temperature history), residual gas concentration and content of species such as NO. As a result, autoignition expressions prove inadequate for engine conditions straying far from those under which they were derived. The currently reported study was designed to separate some of these effects. Experimental pressure crank-angle histories were derived for an engine operated in skip-fire mode to eliminate residuals. The unburned temperature history was derived for each cycle and was used with a number of autoignition/knock models.
Technical Paper

Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability

2004-03-08
2004-01-1071
This paper proposes an advanced control strategy to improve vehicle handling and directional stability by integrating either Active Front Steering (AFS) or Active Rear Steering (ARS) with Variable Torque Distribution (VTD) control. Both AFS and ARS serve as the steerability controller and are designed to achieve the improved yaw rate tracking in low to mid-range lateral acceleration using Sliding Mode Control (SMC); while VTD is used as the stability controller and employs differential driving torque between left and right wheels on the same axle to produce a relatively large stabilizing yaw moment when the vehicle states (sideslip angle and its angular velocity) exceed the reference stable region defined in the phase plane. Based on these stand-alone subsystems, an integrated control scheme which coordinates the control actions of both AFS/ARS and VTD is proposed. The functional difference between AFS and ARS when integrated with VTD is explained physically.
Technical Paper

Drum Brake Contact Analysis and its Influence on Squeal Noise Prediction

2003-10-19
2003-01-3348
A non-linear contact analysis of a leading-trailing shoe drum brake, using the finite element method, is presented. The FE model accurately captures both the static and pseudo-dynamic behaviour at the friction interface. Flexible-to-flexible contact surfaces with elastic friction capabilities are used to determine the pressure distribution. Static contact conditions are established by initially pressing the shoes against the drum. This first load step is followed by a gradual increase of applied rotation to the drum in order to define the maximum reacted braking torque and pseudo-dynamic pressure distribution at the transition point between sticking and sliding motion. The method clearly illustrates the changes in contact force that take place as a function of the applied pressure, coefficient of friction and initial gap between lining and rotor. These changes in contact area are shown to influence the overall stability and therefore squeal propensity of the brake assembly.
Technical Paper

Lap Time Simulation for Racing Car Design

2002-03-04
2002-01-0567
A number of handling models of a small high performance formula type racing car have been produced. These have been used to optimise the performance of the vehicle whilst under going simple manoeuvres and around a complete race track. Recently the vehicle was fitted with a data acquisition system and objective data was taken of the vehicle's handling performance. The paper details an investigation into the accuracy of two (a simple and more sophisticated) vehicle handling models in predicting the actual vehicle's performance from the data collected by comparing measured and simulated results. The investigation studies the steady state and transient response of the vehicle up to the limit of the vehicle's handling performance. A description is also given of the use of the more sophisticated model in a virtual race track simulation where it is used as a development tool to tune the performance of future vehicles.
Technical Paper

Improving Performance of a 6×6 Off-Road Vehicle Through Individual Wheel Control

2002-03-04
2002-01-0968
This paper presents a method of control for a 6×6 series-configured Hybrid Electric Off-road Vehicle (HEOV). The vehicle concerned is an eight-tonne logistics support vehicle which utilizes Hub Mounted Electric Drives (HMED) at each of its six wheel stations. This set-up allows Individual Wheel Control (IWC) to be implemented to improve vehicle handling and mobility. Direct Yaw-moment Control (DYC) is a method of regulating individual wheel torque to control vehicle yaw motion, providing greater stability in cornering. When combined with both a Traction Control System (TCS) and an Anti-lock Braking System (ABS) the tire/road interaction is fully controlled, leading to improved control over vehicle dynamics, whilst also improving vehicle safety.
Technical Paper

Mechanical Performance of V-Ribbed Belt Drives (Theoretical Modelling)

2001-03-05
2001-01-0367
A v-ribbed belt is assumed to be a combination of a flat belt and a v-belt with the same radial movement of the two parts. Based on these assumptions a new theory is developed for the mechanical performance of v-ribbed belt drives, which gives a new modification to Euler's equation (capstan formula). The experimental and theoretical results comparison show that the radial movement of the v-ribbed belt with rib bottom / groove tip contact is slightly less than the values without contact.
Technical Paper

The influence of damper properties on vehicle dynamic behavior

2000-06-12
2000-05-0231
The detailed, dynamic properties of dampers are known to influence substantially some of the subtle - and yet nevertheless hugely important - refinement aspects or ride and handling. Despite this, most of the current work on damping characterization relies on steady-state properties and transient aspects are left largely to subjective in-car assessments by test drivers. The paper describes research work aimed at improving our understanding of the transient properties of dampers through mathematical modeling and then attempting to link these properties to detailed aspects of the vehicle ride and handling. Further experimental work is planned to follow later. From a moderately complex mathematical model of a damper, an attempt is made to identify (a) those transient characteristics which are important in influencing the vehicle responses perceived by test drivers, and (b) which design features of the damper control those characteristics.
Technical Paper

Development and Analysis of a Prototype Controllable Suspension

1997-08-06
972691
Persisting concerns regarding ride comfort, directional stability and more recently road damage have caused the manufacturers of commercial vehicles to consider controllable suspension systems. An electronically controllable adaptive suspension that comprises a variable spring rate system, switchable damping and load levelling is proposed as a cost-effective solution. This paper describes the aforementioned system and provides an outline of the design scheme for a prototype system; practical issues such as system configuration/detail, control system requirements, etc., are discussed. The system is evaluated analytically and both ride and handling modes are examined. In conclusion, performance capabilities are defined and cost-benefit issues addressed.
X