Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Gap Analysis and Future Needs of Tyre Wear Particles

2021-04-06
2021-01-0621
Non-exhaust and exhaust particles from traffic were evaluated to account for nearly equal proportions in traffic-related emissions. Among non-exhaust emissions, tyre wear has been a crucial contributor to Particulate matter (PM), with its mass contribution as high as 30% to non-exhaust emissions from traffic. As exhaust emissions control regulation becomes stricter, which leads to a substantial reduction in exhaust emissions from road traffic, currently relative contributions of non-exhaust particles generated from tyre wear to PM is becoming more important. Accordingly, possible regulatory requirement and effectively control strategy of tyre wear particles needs to be developed. This review paper covers the physical properties, chemical composition, emission rates, and mathematic model development of tyre wear particles.
Technical Paper

Proceedings of Real Driving Emission (RDE) Measurement in China

2018-04-03
2018-01-0653
Light-duty China-6, which is among the most stringent vehicle exhaust emission standards globally, mandates the monitoring and reporting of real driving emissions (RDE) from July, 2023. In the process of regulation promulgation and verification, more than 300 RDE tests have been performed on over 50 China-5 and China-6 certified models. This technical paper endeavors to summarize the experience of RDE practice in China, and discuss the impacts of some boundary conditions (including vehicle dynamic parameters, data processing methods, hybrid propulsion and testing altitude) on the result of RDE measurement. In general, gasoline passenger cars confront few challenges to meet the upcoming RDE NOx requirement, but some China-5 certified samples, even powered by naturally-aspirated engines may have PN issues. PN emissions from some GDI-hybrid powertrain systems also need further reduction to meet China-6 RDE requirements.
Journal Article

Investigation of Combustion and Emission Performance of Hydrogenated Vegetable Oil (HVO) Diesel

2017-10-08
2017-01-2400
Hydrogenated Vegetable Oil (HVO) diesel fuels have the potential to provide a reduced carbon footprint for diesel engines and reduce exhaust emissions. Therefore, it is a strong candidate for transport and diesel powered machines including electricity generators and other off-road machines. In this research, a waste cooking oil derived HVO diesel was investigated for its combustion and emission performance including ignition delays, size segregated particulate number emissions and gaseous emissions. The results were compared to the standard petroleum diesel. A EURO5 emission compliant three litre, direct injection, intercooled IVECO diesel engine equipped with EGR was used which has a maximum power output of 96kW. The engine was equipped with an integrated DOC and DPF aftertreatment system. Both the upstream and downstream of the aftertreatment emissions were measured. The tests were conducted at different RPM and loads at steady state conditions.
Technical Paper

Effect of Supercharging on Cycle-To-Cycle Variation in a Two-Stroke Spark Ignition Engine

2016-04-05
2016-01-0688
Fluctuations in the operational output of spark ignition engines are observed from one engine cycle to the other, when an engine is run at technically identical operating condition. These fluctuations known as cycle-to-cycle variations, when high, adversely affect the performance of an engine. Reduction in cycle-to-cycle variation in engines has been noted by researchers as one of the methods of improving engine efficiency and operational stability. This study investigated the combustion performance characteristics of two fuels: E5 (95% gasoline and 5% ethanol) and ULG98 (unleaded gasoline) in a spark ignition engine, operating at varying inlet pressure conditions and ignition timing. A two-stroke, 80mm bore, spark ignition engine was operated at an engine speed of 750 rpm, inlet pressures of 1.6 and 2.0 bar and spark-timings ranging from 2 to 13 bTDC. A top cylinder head with a centralized spark plug was used in all the experiments.
Technical Paper

Cold Start SI Passenger Car Emissions from Real World Urban Congested Traffic

2015-04-14
2015-01-1064
The tailpipe exhaust emissions were measured under real world urban driving conditions by using a EURO4 emissions compliant SI car equipped with an on-board heated FTIR for speciated gaseous emission measurements, a differential GPS for travel profiles, thermocouples for temperatures, and a MAX fuel meter for transient fuel consumption. Emissions species were measured at 0.5 Hz. The tests were designed to enable cold start to occur into congested traffic, typical of the situation of people living alongside congested roads into a large city. The cold start was monitored through temperature measurements of the TWC front and rear face temperatures and lubricating oil temperatures. The emissions are presented to the end of the cold start, defined when the downstream TWC face temperature is hotter than the front face which occurred at ∼350-400oC. Journeys at various times of the day were conducted to investigate traffic flow impacts on the cold start.
Technical Paper

Knock Properties of Oxygenated Blends in Strongly Charged and Variable Compression Ratio Engines

2014-10-13
2014-01-2608
Replacing the conventional fossil fuel totally or partially with alcohols or ethers in spark-ignition (SI) engine is a promising way to reduce pollutant emissions. A large number of studies on alcohol-containing blends in SI engines could be found in the literature. Nonetheless, investigations of ether-containing blends are by far much less numerous, especially for modern boosted engines. Blending with ether compounds might change the burning rate at high pressure, which consequently changes the anti-knock properties of these fuels and leads to a deterioration in the vehicle drivability. This work reports experiments carried out in two one-cylinder engines: one is a naturally aspirated, variable compression ratio engine, and the other is a strongly charged optical engine. Three fuels with different RON and MON numbers were tested: Iso-octane, a blend Ethyl Tert Butyl Ether (ETBE) with a primary reference fuel, and a commercial gasoline fuel containing 5% by volume of ethanol (E05).
Journal Article

The Influence of Residual Gas NO Content on Knock Onset of Iso-Octane, PRF, TRF and ULG Mixtures in SI Engines

2013-12-20
2013-01-9046
Reported in the current paper is a study of the effects of Nitric Oxide (NO) within a simulated Exhaust Gas Residual (sEGR) on Spark Ignition (SI) engine end gas autoignition. A modified version of the single cylinder Leeds University Ported Optical Engine Version 2 (LUPOE-2) engine was designed to completely eliminate retained residual gas and so allow unambiguous definition of the composition of the in-cylinder charge. The engine was alternately operated on stoichiometric mixtures of iso-octane, two Primary Reference Fuels (PRF), a Toluene Reference Fuel (TRF), and a commercially available Unleaded Gasoline (ULG) and air. These mixtures were diluted with sEGR (products of the complete stoichiometric combustion of the given fuel/air mixture) in mass fractions ranging from 0-15%; with and without 5000ppm NO (0.52% by mass) within that sEGR.
Technical Paper

Real World Diesel Engine Greenhouse Gas Emissions for Diesel Fuel and B100

2013-04-08
2013-01-1514
The transport sector is one of the major contributors to greenhouse gas emissions. This study investigated three greenhouse gases emitted from road transport using a probe vehicle: CO₂, N₂O and CH₄ emissions as a function temperature. It should be highlighted that methane is a greenhouse gas that similarly to carbon dioxide contributes to global warming and climate change. An oxidation catalyst was used to investigate CO₂, N₂O and CH₄ GHG emissions over a real-world driving cycle that included urban congested traffic and extra-urban driving conditions. The results were determined under hot start conditions, but in congested traffic the catalyst cooled below its light-off temperature and this resulted in considerable N₂O emissions as the oxidation catalyst temperature was in the N₂O formation band. This showed higher N₂O during hot start than for diesel fuel and B100 were compared. The B100 fuel was Fatty Acid Methyl Ester (FAME), derived from waste cooking oil, which was mainly RME.
Technical Paper

Analysis of Various Driving Parameters and Emissions for Passenger Cars Driven With and Without Stops at Intersections under Different Test Cycles

2012-04-16
2012-01-0880
Different driving test cycles, the Leeds-West Park (LWP) loop and the Leeds-High Park (LHP) or HPL-A and B (Leeds-Hyde Park Loop-A or B, hereafter referred as HPL-A or B cycle) loop were selected for this urban intersection research and results are presented in this study. Different emissions-compliant petrol passenger cars (EURO 1, 2, 3 and 4) were compared for their real-world emissions. A reasonable distance of steady state speed was needed and for the analysis made in this paper were chosen vehicle speeds at ~20, ~30 and ~40 km/h. Specific spot of periods of driving at the speeds mentioned above were identified, then the starting and ending point was found and the total emissions in g for that period divided by the distance was calculated. A typical urban driving cycle including a loop and a section of straight road was used for the comparison test as it was similar to the legislative ECE15 urban driving cycle.
Journal Article

Waste Lubricating Oil as a Source of Hydrogen Fuel using Chemical Looping Steam Reforming

2010-10-25
2010-01-2192
Initial results are presented for the production of hydrogen from waste lubricating oil using a chemical looping reforming (CLR) process. The development of flexible and sustainable sources of hydrogen will be required to facilitate a "hydrogen economy." The novel CLR process presented in this paper has an advantage over hydrogen production from conventional steam reforming because CLR can use complex, low value, waste oils. Also, because the process is scalable to small and medium size, hydrogen can be produced close to where it is required, minimizing transport costs. Waste lubricating oil typically contains 13-14% weight of hydrogen, which through the steam reforming process could produce a syngas containing around 75 vol% H₂, representing over 40 wt% of the fuel. The waste oil was converted to a hydrogen-rich syngas in a packed bed reactor, using a Ni/ Al₂O₃ catalyst as the oxygen transfer material (OTM).
Technical Paper

Integration of Active Suspension and Active Driveline to Ensure Stability While Improving Vehicle Dynamics

2005-04-11
2005-01-0414
Most active control systems developed for passenger vehicles are developed as safety systems. These control systems usually focus on improving vehicle stability and safety while ignoring the effects on the vehicle driveability. While stability is the primary concern of these control systems the driveability of the vehicle is also an important consideration. An example of compromised driveability in a stability control system is brake based active yaw control. Brake based systems are very effective at stability control but can have a negative impact on the longitudinal dynamics of a vehicle. The objective of the vehicle control systems developed for the future will be to preserve vehicle driveability while ensuring the stability of the vehicle. In this work, active suspension and active drivelines are developed as stability control systems that have a minimal impact on the driveability of the vehicle.
Technical Paper

Integration of Active Suspension and Active Driveline to Improve Vehicle Dynamics

2004-11-30
2004-01-3544
Many active control systems are developed as safety systems for passenger vehicles. These control systems usually focus on improving vehicle stability and safety while ignoring the effects on the vehicle driveability. In the motorsport environment, increased stability is desirable but not if the driveability of the vehicle is heavily compromised. In this work, active suspension and active drivelines are examined to improve vehicle dynamics and enhance driveability while maintaining stability. The active control systems are developed as separate driveability and stability controls and tested individually then integrated to create a multi-objective control system to improve both driveability and stability. The controllers are tested with standard vehicle manoeuvres.
Technical Paper

The Influence of Simulated Residual and NO Concentrations on Knock Onset for PRFs and Gasolines

2004-10-25
2004-01-2998
Modern engine developments result in very different gas pressure-temperature histories to those in RON/MON determination tests and strain the usefulness of those knock scales and their applicability in SI engine knock and HCCI autoignition onset models. In practice, autoignition times are complex functions of fuel chemistry and burning velocity (which affects pressure-temperature history), residual gas concentration and content of species such as NO. As a result, autoignition expressions prove inadequate for engine conditions straying far from those under which they were derived. The currently reported study was designed to separate some of these effects. Experimental pressure crank-angle histories were derived for an engine operated in skip-fire mode to eliminate residuals. The unburned temperature history was derived for each cycle and was used with a number of autoignition/knock models.
Technical Paper

Integrated Active Steering and Variable Torque Distribution Control for Improving Vehicle Handling and Stability

2004-03-08
2004-01-1071
This paper proposes an advanced control strategy to improve vehicle handling and directional stability by integrating either Active Front Steering (AFS) or Active Rear Steering (ARS) with Variable Torque Distribution (VTD) control. Both AFS and ARS serve as the steerability controller and are designed to achieve the improved yaw rate tracking in low to mid-range lateral acceleration using Sliding Mode Control (SMC); while VTD is used as the stability controller and employs differential driving torque between left and right wheels on the same axle to produce a relatively large stabilizing yaw moment when the vehicle states (sideslip angle and its angular velocity) exceed the reference stable region defined in the phase plane. Based on these stand-alone subsystems, an integrated control scheme which coordinates the control actions of both AFS/ARS and VTD is proposed. The functional difference between AFS and ARS when integrated with VTD is explained physically.
Technical Paper

Improving Performance of a 6×6 Off-Road Vehicle Through Individual Wheel Control

2002-03-04
2002-01-0968
This paper presents a method of control for a 6×6 series-configured Hybrid Electric Off-road Vehicle (HEOV). The vehicle concerned is an eight-tonne logistics support vehicle which utilizes Hub Mounted Electric Drives (HMED) at each of its six wheel stations. This set-up allows Individual Wheel Control (IWC) to be implemented to improve vehicle handling and mobility. Direct Yaw-moment Control (DYC) is a method of regulating individual wheel torque to control vehicle yaw motion, providing greater stability in cornering. When combined with both a Traction Control System (TCS) and an Anti-lock Braking System (ABS) the tire/road interaction is fully controlled, leading to improved control over vehicle dynamics, whilst also improving vehicle safety.
Technical Paper

Development and Analysis of a Prototype Controllable Suspension

1997-08-06
972691
Persisting concerns regarding ride comfort, directional stability and more recently road damage have caused the manufacturers of commercial vehicles to consider controllable suspension systems. An electronically controllable adaptive suspension that comprises a variable spring rate system, switchable damping and load levelling is proposed as a cost-effective solution. This paper describes the aforementioned system and provides an outline of the design scheme for a prototype system; practical issues such as system configuration/detail, control system requirements, etc., are discussed. The system is evaluated analytically and both ride and handling modes are examined. In conclusion, performance capabilities are defined and cost-benefit issues addressed.
Technical Paper

The Influence of Circumferential Waviness of the Journal on the Lubrication of Dynamically Loaded Journal Bearings

1997-02-24
970216
Current trends in automotive engine design are towards smaller, lighter components operating under higher specific loads. Consequently, engine bearings are expected to operate under highly stressed conditions, with minimum lubricant film thicknesses falling below 1μm. There is, however, insufficient understanding of acceptable tolerances on surface geometry of bearing shells and crankshaft pins. Measurement data suggest that some engine crankpins are machined with as many as 21 circumferential lobes. Some lobes have amplitudes in excess of 5 μm and are thought to be responsible for premature bearing damage. This study presents results from a theoretical analysis of dynamically loaded journal bearings with circumferential lobes on the journal. The Reynolds equation for a rigid journal bearing is solved for an incompressible, Newtonian, iso-viscous lubricant, with a flow conserving cavitation model accommodating oil film history.
Technical Paper

A Theoretical and Experimental Study of the Modes of End Gas Autoignition Leading to Knock in S. I. Engines

1994-10-01
942060
A 2-D simulation of fluid dynamic and chemistry interaction following end gas autoignition has demonstrated three distinct modes of reaction, dependent upon the temperature gradient about an exothermic centre. All three modes (deflagration, developing detonation and thermal explosion) can contribute to knock; the developing detonation case, associated with intermediate temperature gradient, has been identified as the more damaging. The simulation code (LUMAD) has been used in a systematic parametric study designed to separate the complex interacting events which can lead to mixed modes in real engines. A most significant finding related to the sequential autoignition of multiple exothermic centres.
Technical Paper

Spatial Structure in End-Gas Autoignition

1993-10-01
932758
Numerical investigations are reported on the location of sites at which autoignition first develops in the end-gas ahead of a spark-ignited flame in a combustion chamber following rapid compression of an alkane + air mixture to high pressures and temperatures. Attention is drawn to the part played by the reactions that give rise to a negative temperature coefficient of reaction rate in an inhomogeneous temperature field. A ‘reduced’ kinetic mechanism was employed to model the spontaneous oxidation of n-alkanes. Flame propagation was described in terms of the ‘eddy dissipation concept’ and coupled to the more detailed mechanism by means of a switching algorithm. The CFD calculations were performed by use of KIVA II.
Technical Paper

The Role of Exhaust Pipe and Incylinder Deposits on Diesel Particulate Composition

1992-09-01
921648
Diesel engine exhaust pipe and incylinder deposits were analysed for the global fuel, lube oil, carbon and ash fractions for a range of diesel engines. A large SOF fraction, typically 30%, was found and this was dominated by lubricating oil. These deposits are shown to contain significant levels of PAH and hence provide a source of diesel PAH emissions and possible sites for incylinder pyrosynthesis of high molecular weight PAH. A Perkins 4-236 NA DI was used to investigate the role of exhaust pipe deposits on PAH emissions. It was shown that PAH compounds could be volatilised from the exhaust pipe. The difference in the exhaust inlet and outlet particulate composition for diesel and kerosene fuels was used to quantify the n-alkane and PAH emissions originating from the exhaust pipe deposits. Comparison with pure PAH free fuels showed that the exhaust outlet PAH composition was similar to that expected from the exhaust pipe deposits.
X