Refine Your Search

Topic

Author

Search Results

Technical Paper

Visualization of Frequency Response Using Nyquist Plots

2022-03-29
2022-01-0753
Nyquist plots are a classical means to visualize a complex vibration frequency response function. By graphing the real and imaginary parts of the response, the dynamic behavior in the vicinity of resonances is emphasized. This allows insight into how modes are coupling, and also provides a means to separate the modes. Mathematical models such as Nyquist analysis are often embedded in frequency analysis hardware. While this speeds data collection, it also removes this visually intuitive tool from the engineer’s consciousness. The behavior of a single degree of freedom system will be shown to be well described by a circle on its Nyquist plot. This observation allows simple visual examination of the response of a continuous system, and the determination of quantities such as modal natural frequencies, damping factors, and modes shapes. Vibration test data from an auto rickshaw chassis are used as an example application.
Journal Article

Field Data Study of the Effect of Knee Airbags on Lower Extremity Injury in Frontal Crashes

2021-04-06
2021-01-0913
Knee airbags (KABs) are one countermeasure in newer vehicles that could influence lower extremity (LEX) injury, the most frequently injured body region in frontal crashes. To determine the effect of KABs on LEX injury for drivers in frontal crashes, the analysis examined moderate or greater LEX injury (AIS 2+) in two datasets. Logistic regression considered six main effect factors (KAB deployment, BMI, age, sex, belt status, driver compartment intrusion). Eighty-five cases with KAB deployment from the Crash Injury Research and Engineering Network (CIREN) database were supplemented with 8 cases from the International Center for Automotive Medicine (ICAM) database and compared to 289 CIREN non-KAB cases. All cases evaluated drivers in frontal impacts (11 to 1 o’clock Principal Direction of Force) with known belt use in 2004 and newer model year vehicles. Results of the CIREN/ICAM dataset were compared to analysis of a similar dataset from NASS-CDS (5441 total cases, 418 KAB-deployed).
Technical Paper

Accelerometer-Based Estimation of Combustion Features for Engine Feedback Control of Compression-Ignition Direct-Injection Engines

2020-04-14
2020-01-1147
An experimental investigation of non-intrusive combustion sensing was performed using a tri-axial accelerometer mounted to the engine block of a small-bore high-speed 4-cylinder compression-ignition direct-injection (CIDI) engine. This study investigates potential techniques to extract combustion features from accelerometer signals to be used for cycle-to-cycle engine control. Selection of accelerometer location and vibration axis were performed by analyzing vibration signals for three different locations along the block for all three of the accelerometer axes. A magnitude squared coherence (MSC) statistical analysis was used to select the best location and axis. Based on previous work from the literature, the vibration signal filtering was optimized, and the filtered vibration signals were analyzed. It was found that the vibration signals correlate well with the second derivative of pressure during the initial stages of combustion.
Technical Paper

Comparison between Finite Element and Hybrid Finite Element Results to Test Data for the Vibration of a Production Car Body

2019-06-05
2019-01-1530
The Hybrid Finite Element Analysis (HFEA) method is based on combining conventional Finite Element Analysis (FEA) with analytical solutions and energy methods for mid-frequency computations. The method is appropriate for computing the vibration of structures which are comprised by stiff load bearing components and flexible panels attached to them; and for considering structure-borne loadings with the excitations applied on the load bearing members. In such situations, the difficulty in using conventional FEA at higher frequencies originates from requiring a very large number of elements in order to capture the flexible wavelength of the panel members which are present in a structure. In the HFEA the conventional FEA model is modified by de-activating the bending behavior of the flexible panels in the FEA computations and introducing instead a large number of dynamic impedance elements for representing the omitted bending behavior of the panels.
Technical Paper

Structural Vibration of an Elastically Supported Plate due to Excitation of a Turbulent Boundary Layer

2019-06-05
2019-01-1470
High-Reynolds number turbulent boundary layers are an important source for inducing structural vibration. Small geometric features of a structure can generate significant turbulence that result in structural vibration. In this work we develop a new method to couple a high-fidelity fluid solver with a dynamic hybrid analytical-numerical formulation for the structure. The fluid solver uses the Large-Eddy Simulation closure for the unresolved turbulence. Specifically, a local and dynamic one-equation eddy viscosity model is employed. The fluid pressure fluctuation on the structure is mapped to the dynamic structural model. The plate where the flow excitation is applied is considered as part of a larger structure. A hybrid approach based on the Component Mode Synthesis (CMS) is used for developing the new hybrid formulation. The dynamic behavior of the plate which is excited by the flow is modeled using finite elements.
Technical Paper

Comfortable Head and Neck Postures in Reclined Seating for Use in Automobile Head Rest Design

2019-04-02
2019-01-0408
Little information is available on passenger preferences for posture and support in highly reclined seat configurations. To address this gap, a laboratory study was conducted with 24 adult passengers at seat back angles from 23 to 53 degrees. Passenger preferences for head and neck posture with and without head support were recorded. This paper presents the characteristics of the passengers’ preferred head support with respect to thorax, head, and neck posture.
Technical Paper

In-Vehicle Occupant Head Tracking Using aLow-Cost Depth Camera

2018-04-03
2018-01-1172
Analyzing dynamic postures of vehicle occupants in various situations is valuable for improving occupant accommodation and safety. Accurate tracking of an occupant’s head is of particular importance because the head has a large range of motion, controls gaze, and may require special protection in dynamic events including crashes. Previous vehicle occupant posture studies have primarily used marker-based optical motion capture systems or multiple video cameras for tracking facial features or markers on the head. However, the former approach has limitations for collecting on-road data, and the latter is limited by requiring intensive manual postprocessing to obtain suitable accuracy. This paper presents an automated on-road head tracking method using a single Microsoft Kinect V2 sensor, which uses a time-of-flight measurement principle to obtain a 3D point cloud representing objects in the scene at approximately 30 Hz.
Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Technical Paper

An Indirect Tire Health Monitoring System Using On-board Motion Sensors

2017-03-28
2017-01-1626
This paper proposes a method to make diagnostic/prognostic judgment about the health of a tire, in term of its wear, using existing on-board sensor signals. The approach focuses on using an estimate of the effective rolling radius (ERR) for individual tires as one of the main diagnostic/prognostic means and it determines if a tire has significant wear and how long it can be safely driven before tire rotation or tire replacement are required. The ERR is determined from the combination of wheel speed sensor (WSS), Global Positioning sensor (GPS), the other motion sensor signals, together with the radius kinematic model of a rolling tire. The ERR estimation fits the relevant signals to a linear model and utilizes the relationship revealed in the magic formula tire model. The ERR can then be related to multiple sources of uncertainties such as the tire inflation pressure, tire loading changes, and tire wear.
Journal Article

Evaluation of the Seat Index Point Tool for Military Seats

2016-04-05
2016-01-0309
This study evaluated the ISO 5353 Seat Index Point Tool (SIPT) as an alternative to the SAE J826 H-point manikin for measuring military seats. A tool was fabricated based on the ISO specification and a custom back-angle measurement probe was designed and fitted to the SIPT. Comparisons between the two tools in a wide range of seating conditions showed that the mean SIP location was 5 mm aft of the H-point, with a standard deviation of 7.8 mm. Vertical location was not significantly different between the two tools (mean - 0.7 mm, sd 4.0 mm). A high correlation (r=0.9) was observed between the back angle measurements from the two tools. The SIPT was slightly more repeatable across installations and installers than the J826 manikin, with most of the discrepancy arising from situations with flat seat cushion angles and either unusually upright or reclined back angles that caused the J826 manikin to be unstable.
Technical Paper

Design Environment for Nonlinear Model Predictive Control

2016-04-05
2016-01-0627
Model Predictive Control (MPC) design methods are becoming popular among automotive control researchers because they explicitly address an important challenge faced by today’s control designers: How does one realize the full performance potential of complex multi-input, multi-output automotive systems while satisfying critical output, state and actuator constraints? Nonlinear MPC (NMPC) offers the potential to further improve performance and streamline the development for those systems in which the dynamics are strongly nonlinear. These benefits are achieved in the MPC framework by using an on-line model of the controlled system to generate the control sequence that is the solution of a constrained optimization problem over a receding horizon.
Technical Paper

NH3 Storage in Sample Lines

2014-04-01
2014-01-1586
Ammonia, often present in exhaust gas samples, is a polar molecule gas that interacts with walls of the gas sampling and analysis equipment resulting in delayed instrument response. A set of experiments quantified various materials and process parameters of a heated sample line system for ammonia (NH3) response using a Fourier Transform infrared spectrometer (FTIR). Response attenuation rates are due to mixing and diffusion during transport as well as NH3 wall storage. Mixing/diffusion effects cause attenuation with a time constant 1-10 seconds. Wall storage attenuation has a time constant 10-200 seconds. The effects of sample line diameter and length, line temperature, line material, hydrated versus dry gas, and flow rate were examined. All of these factors are statistically significant to variation of at least one of the time constants. The NH3 storage on the sample system walls was calculated as a function of the experimental test as well.
Technical Paper

Experience and Skill Predict Failure to Brake Errors: Further Validation of the Simulated Driving Assessment

2014-04-01
2014-01-0445
Driving simulators offer a safe alternative to on-road driving for the evaluation of performance. In addition, simulated drives allow for controlled manipulations of traffic situations producing a more consistent and objective assessment experience and outcome measure of crash risk. Yet, few simulator protocols have been validated for their ability to assess driving performance under conditions that result in actual collisions. This paper presents results from a new Simulated Driving Assessment (SDA), a 35- to-40-minute simulated assessment delivered on a Real-Time® simulator. The SDA was developed to represent typical scenarios in which teens crash, based on analyses from the National Motor Vehicle Crash Causation Survey (NMVCCS). A new metric, failure to brake, was calculated for the 7 potential rear-end scenarios included in the SDA and examined according two constructs: experience and skill.
Journal Article

In-Vehicle Driver State Detection Using TIP-II

2014-04-01
2014-01-0444
A transportable instrumentation package to collect driver, vehicle and environmental data is described. This system is an improvement on an earlier system and is called TIP-II [13]. Two new modules were designed and added to the original system: a new and improved physiological signal module (PH-M) replaced the original physiological signals module in TIP, and a new hand pressure on steering wheel module (HP-M) was added. This paper reports on exploratory tests with TIP-II. Driving data were collected from ten driver participants. Correlations between On-Board-Diagnostics (OBD), video data, physiological data and specific driver behavior such as lane departure and car following were investigated. Initial analysis suggested that hand pressure, skin conductance level, and respiration rate were key indicators of lane departure lateral displacement and velocity, immediately preceding lane departure; heart rate and inter-beat interval were affected during lane changes.
Technical Paper

Comparison of Verity and Volvo Methods for Fatigue Life Assessment of Welded Structures

2013-09-24
2013-01-2357
Great efforts have been made to develop the ability to accurately and quickly predict the durability and reliability of vehicles in the early development stage, especially for welded joints, which are usually the weakest locations in a vehicle system. A reliable and validated life assessment method is needed to accurately predict how and where a welded part fails, while iterative testing is expensive and time consuming. Recently, structural stress methods based on nodal force/moment are becoming widely accepted in fatigue life assessment of welded structures. There are several variants of structural stress approaches available and two of the most popular methods being used in automotive industry are the Volvo method and the Verity method. Both methods are available in commercial software and some concepts and procedures related the nodal force/moment have already been included in several engineering codes.
Technical Paper

Vehicle Airborne Noise Analysis Using the Energy Finite Element Method

2013-05-13
2013-01-1998
The Energy Finite Element Analysis (EFEA) has been developed for computing the structural vibration and the interior noise level of complex structural-acoustic systems by solving numerically governing differential equations with energy densities as primary variables. In this paper a complete simulation process for evaluating airborne noise in an automotive vehicle is presented and validated through extensive comparison to test data. The theoretical elements associated with the important paths of the noise transfer from the exterior of the vehicle to the interior acoustic space are discussed. The steps required for developing an EFEA model for a vehicle are presented. The model is developed based on the physical construction of the vehicle system and no test measurements are utilized for adjusting the numerical model.
Technical Paper

Validation of the Human Motion Simulation Framework: Posture Prediction for Standing Object Transfer Tasks

2009-06-09
2009-01-2284
The Human Motion Simulation Framework is a hierarchical set of algorithms for physical task simulation and analysis. The Framework is capable of simulating a wide range of tasks, including standing and seated reaches, walking and carrying objects, and vehicle ingress and egress. In this paper, model predictions for the terminal postures of standing object transfer tasks are compared to data from 20 subjects with a wide range of body dimensions. Whole body postures were recorded using optical motion capture for one-handed and two-handed object transfers to target destinations at three angles from straight ahead and three heights. The hand and foot locations from the data were input to the HUMOSIM Framework Reference Implementation (HFRI) in the Jack human modeling software. The whole-body postures predicted by the HFRI were compared to the measured postures using a set of measures selected for their importance to ergonomic analysis.
Technical Paper

Structure-borne Vehicle Analysis using a Hybrid Finite Element Method

2009-05-19
2009-01-2196
The hybrid FEA method combines the conventional FEA method with the energy FEA (EFEA) for computing the structural vibration in vehicle structures when the excitation is applied on the load bearing stiff structural members. Conventional FEA models are employed for modeling the behavior of the stiff members in the vehicle. In order to account for the effect of the flexible members in the FEA analysis, appropriate damping and spring/mass elements are introduced at the connections between stiff and flexible members. Computing properly the values of these damping and spring/mass elements is important for the overall accuracy of the computations. Utilizing in these computations the analytical solutions for the driving point impedance of infinite or semi-infinite members introduces significant approximations.
Technical Paper

Three-Dimensional Reach Kinematics of the Upper Extremity in a Dynamic Vehicle Environment

2008-06-17
2008-01-1886
Simulation of reach movements is an essential component for proactive ergonomic analysis in digital human modeling and for numerous applications in vehicle design. Most studies on reach kinematics described human movements in static conditions. Earlier studies of reach performance in vibration environments focused mainly on fingertip deviation without considering multi-body dynamics. However, for the proper assessment of reach performance under whole-body vibration exposure, a multi-body biodynamic model needs to be developed. This study analyzes three dimensional reach kinematics of the upper extremity during in-vehicle operations, using a multi-segmental model of the upper body in the vibratory environment. The goals are to identify the characteristics of upper body reach movements and to investigate vibration-induced changes in joint kinematics. Thirteen subjects reached to four target directions in the right hemisphere.
Technical Paper

Influence of Object Properties on Reaching and Grasping Tasks

2008-06-17
2008-01-1905
This paper investigates how reaching and grasping are affected by various object properties and conditions. While previous studies have examined the effect of object attributes such as size, shape, and distance from the subject, there is a need for quantitative models of finger motions. To accomplish this, the experiment was performed with six subjects where the 3D-coordinates of the finger joints and the wrist of one hand were recorded during reaching and grasping tasks. Finger joint angles at final posture were found to depend on both object size and orientation while wrist postures were changed primarily depending on object orientation. Also, each object orientation caused alteration in relative object location with respect to the hand at final posture. In addition, analysis of temporal variables revealed that it took from 1.06 to 1.30 seconds depending on the object distance to start reaching and complete grasping of the object.
X