Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Influence of HCCI and SACI Combustion Modes on NH3 Generation and Subsequent Storage across a TWC-SCR System

2016-04-05
2016-01-0951
Advanced engine combustion strategies, such as HCCI and SACI, allow engines to achieve high levels of thermal efficiency with low levels of engine-out NOx emissions. To maximize gains in fuel efficiency, HCCI combustion is often run at lean operating conditions. However, lean engine operation prevents the conventional TWC after-treatment system from reaching legislated tailpipe emissions due to oxygen saturation. One potential solution for handling this challenge without the addition of costly NOx traps or on-board systems for urea injection is the passive TWC-SCR concept. This concept includes the integration of an SCR catalyst downstream of a TWC and the use of periods of rich or stoichiometric operation to generate NH3 over the TWC to be stored on the SCR catalyst until it is needed for NOx reduction during subsequent lean operation.
Technical Paper

NH3 Storage in Sample Lines

2014-04-01
2014-01-1586
Ammonia, often present in exhaust gas samples, is a polar molecule gas that interacts with walls of the gas sampling and analysis equipment resulting in delayed instrument response. A set of experiments quantified various materials and process parameters of a heated sample line system for ammonia (NH3) response using a Fourier Transform infrared spectrometer (FTIR). Response attenuation rates are due to mixing and diffusion during transport as well as NH3 wall storage. Mixing/diffusion effects cause attenuation with a time constant 1-10 seconds. Wall storage attenuation has a time constant 10-200 seconds. The effects of sample line diameter and length, line temperature, line material, hydrated versus dry gas, and flow rate were examined. All of these factors are statistically significant to variation of at least one of the time constants. The NH3 storage on the sample system walls was calculated as a function of the experimental test as well.
Technical Paper

The Development of HFE Space Claims for Combat Vehicles

2014-04-01
2014-01-0488
Discuss the basics of posturing and positioning of the full range of occupants necessary to cover the required anthropometric demographics in combat vehicles, both ground and air, since there are similarities to both and that they are both very different than the traditional automotive packaging scenarios. It is based on the Eye Reference Point and the Design Eye Point. Discuss the three Reach Zones: Primary, Secondary and Tertiary. Discuss Vision Zones and potentially ground intercepts. Discuss body clearances, both static and dynamic. Discuss the basic effects of packaging occupants with body armor with respect to SRP's and MSRP's.
Technical Paper

Assessing the Importance of Motion Dynamics for Ergonomic Analysis of Manual Materials Handling Tasks using the AnyBody Modeling System

2007-06-12
2007-01-2504
Most current applications of digital human figure models for ergonomic assessments of manual tasks focus on the analysis of a static posture. Tools available for static analysis include joint-specific strength, calculation of joint moments, balance maintenance capability, and low-back compression or shear force estimates. Yet, for many tasks, the inertial loads due to acceleration of body segments or external objects may contribute significantly to internal body forces and tissue stresses. Due to the complexity of incorporating the dynamics of motion into analysis, most commercial software packages used for ergonomic assessment do not have the capacity to include dynamic effects. Thus, commercial human modeling packages rarely provide an opportunity for the user to determine if a static analysis is sufficient.
Technical Paper

Predicting Foot Positions for Manual Materials Handling Tasks

2005-06-14
2005-01-2681
For many industrial tasks (push, pull, lift, carry, etc.), restrictions on grip locations and visibility constrain the hand and head positions and help to define feasible postures. In contrast, foot locations are often minimally constrained and an ergonomics analyst can choose several different stances in selecting a posture to analyze. Also, because stance can be a critical determinant of a biomechanical assessment of the work posture, the lack of a valid method for placing the feet of a manikin with respect to the task compromises the accuracy of the analysis. To address this issue, foot locations and orientations were captured in a laboratory study of sagittal plane and asymmetric manual load transfers. A pilot study with four volunteers of varying anthropometry approached a load located on one of three shelves and transferred the load to one of six shelves.
Technical Paper

Analysis of Premixed Charge Compression Ignition Combustion With a Sequential Fluid Mechanics-Multizone Chemical Kinetics Model

2005-04-11
2005-01-0115
We have developed a methodology for analysis of Premixed Charge Compression Ignition (PCCI) engines that applies to conditions in which there is some stratification in the air-fuel distribution inside the cylinder at the time of combustion. The analysis methodology consists of two stages: first, a fluid mechanics code is used to determine temperature and equivalence ratio distributions as a function of crank angle, assuming motored conditions. The distribution information is then used for grouping the mass in the cylinder into a two-dimensional (temperature-equivalence ratio) array of zones. The zone information is then handed on to a detailed chemical kinetics model that calculates combustion, emissions and engine efficiency information. The methodology applies to situations where chemistry and fluid mechanics are weakly linked.
Technical Paper

Data-Based Motion Prediction

2003-06-17
2003-01-2229
A complete scheme for motion prediction based on motion capture data is presented. The scheme rests on three main components: a special posture representation, a diverse motion capture database and prediction method. Most prior motion prediction schemes have been based on posture representations based on well-known local or global angles. Difficulties have arisen when trying to satisfy constraints, such as placing a hand on a target or scaling the posture for a subject of different stature. Inverse kinematic methods based on such angles require optimization that become increasingly complex and computationally intensive for longer linkages. A different representation called stretch pivot coordinates is presented that avoids these difficulties. The representation allows for easy rescaling for stature and other linkage length variations and satisfaction of endpoint constraints, all without optimization allowing for rapid real time use.
Technical Paper

Selection Families of Optimal Engine Designs Using Nonlinear Programming and Parametric Sensitivity Analysis

1997-05-01
971600
The selection process of key engine design variables to maximize peak power subject to fuel economy and packaging objectives is formulated as an optimization problem readily solved with nonlinear programming. The merit of this approach lies not in finding a single optimal engine, but in identifying a family of optimal designs dependent on parameter changes in the constraint set. Sensitivity analysis of the optimum to packaging parameters, fuel economy parameters, and manufacturing parameters is presented and discussed in the context of product development decisions.
Technical Paper

An Experimental Heat Release Rate Analysis of a Diesel Engine Operating Under Steady State Conditions

1997-02-24
970889
An experimental heat release rate analysis was conducted on a six cylinder, 12.7 liter Detroit Diesel Series 60 turbocharged engine operating under steady state conditions. The overall chemical, or gross, rate of heat release and the net apparent rate of heat release were determined from experimental measurements. The gross, time averaged, heat release rate was determined by two separate concepts/methods using exhaust gas concentration measurements from the Nicolet Rega 7000 Real Time Exhaust Gas Analyzer and the measured exhaust gas flow rate. The net apparent rate of heat release was determined from the in-cylinder pressure measurements for each of the six cylinders, averaged over 80 cycles. These pressure measurements were obtained using a VXI based Tektronix data acquisition system and LabVIEW software. A computer algorithm then computed the net apparent rate of heat release from the averaged in-cylinder pressure measurements.
Technical Paper

Fuel Economy Analysis for a Hybrid Concept Car Based on a Buffered Fuel-Engine Operating at an Optimal Point

1995-02-01
950958
A hybrid car is conceptually described and analyzed which meets the goal of a factor of three improvement in fuel economy set by the government-industry collaboration, Partnership for a New Generation of Vehicles, announced Sept. 29, 1993. This car combines an internal combustion engine with a low-energy, but high-power capacity, storage unit, such as a capacitor or flywheel. The storage capacity is one-half kWh. All energy requirements are ultimately met from the fuel tank. Essentially all the performance achievements of current conventional cars are met by this hybrid. Two versions of the hybrid are considered: one in which the vehicle loads are the same as those of the average 1993 car, but the drive train is replaced with a hybrid system, and one, where, in addition, the vehicle loads are reduced, at fixed performance and interior volume, to levels slightly beyond the best achievements in current production vehicles.
Technical Paper

The Effect of Some Fuel and Engine Factors on Diesel Smoke

1969-02-01
690557
Possible mechanisms for smoke formation in the diesel engine are discussed. Emphasis is placed on the effects of some engine and fuel factors on carbon formation during the course of combustion, including cetane number, fuel volatility, air charge temperature, and after-injection. The tests were made with a single-cylinder, open chamber research engine, with three fuels, covering a wide range of inlet air temperatures and pressures. There is evidence that smoke intensity increased with increase in the cetaine number of the fuels with inlet air temperatures near atmospheric. Increase in the air charge temperature caused an increase in smoke intensity for volatile fuels and had an opposite effect on less volatile fuels for the open chamber engine used. The smoke intensity was found to increase dramatically with after-injection, with all other parameters kept constant. The concept that flame cooling is the main cause for smoke formation is examined.
X