Refine Your Search

Topic

Author

Search Results

Technical Paper

Structural-Acoustic Modeling and Optimization of a Submarine Pressure Hull

2019-06-05
2019-01-1498
The Energy Finite Element Analysis (EFEA) has been validated in the past through comparison with test data for computing the structural vibration and the radiated noise for Naval systems in the mid to high frequency range. A main benefit of the method is that it enables fast computations for full scale models. This capability is exploited by using the EFEA for a submarine pressure hull design optimization study. A generic but representative pressure hull is considered. Design variables associated with the dimensions of the king frames, the thickness of the pressure hull in the vicinity of the excitation (the latter is considered to be applied on the king frames of the machinery room), the dimensions of the frames, and the damping applied on the hull are adjusted during the optimization process in order to minimize the radiated noise in the frequency range from 1,000Hz to 16,000Hz.
Technical Paper

Comparison between Finite Element and Hybrid Finite Element Results to Test Data for the Vibration of a Production Car Body

2019-06-05
2019-01-1530
The Hybrid Finite Element Analysis (HFEA) method is based on combining conventional Finite Element Analysis (FEA) with analytical solutions and energy methods for mid-frequency computations. The method is appropriate for computing the vibration of structures which are comprised by stiff load bearing components and flexible panels attached to them; and for considering structure-borne loadings with the excitations applied on the load bearing members. In such situations, the difficulty in using conventional FEA at higher frequencies originates from requiring a very large number of elements in order to capture the flexible wavelength of the panel members which are present in a structure. In the HFEA the conventional FEA model is modified by de-activating the bending behavior of the flexible panels in the FEA computations and introducing instead a large number of dynamic impedance elements for representing the omitted bending behavior of the panels.
Technical Paper

Quantifying the Effect of Initialization Errors for Enabling Accurate Online Drivetrain Simulations

2019-04-02
2019-01-0347
Simulations conducted on-board in a vehicle control module can offer valuable information to control strategies. Continued improvements to on-board computing hardware make online simulations of complex dynamic systems such as drivetrains within reach. This capability enables predictions of the system response to various control actions and disturbances. Implementation of online simulations requires model initialization that is consistent with the physical drivetrain state. However, sensor signals and estimated variables are susceptible to errors, compromising the accuracy of the initialization and any future state predictions as the simulation proceeds through the numerical integration process. This paper describes a drivetrain modeling and analysis method that accounts for initialization errors, thereby enabling accurate simulations of system behaviors.
Technical Paper

Hazard Cuing Systems for Teen Drivers: A Test-Track Evaluation on Mcity

2019-04-02
2019-01-0399
There is a strong evidence that the overrepresentation of teen drivers in motor vehicle crashes is mainly due to their poor hazard perception skills, i.e., they are unskilled at appropriately detecting and responding to roadway hazards. This study evaluates two cuing systems designed to help teens better understand their driving environment. Both systems use directional color-coding to represent different levels of proximity between one’s vehicle and outside agents. The first system provides an overview of the location of adjacent objects in a head-up display in front of the driver and relies on drivers’ focal vision (focal cuing system). The second system presents similar information, but in the drivers’ peripheral vision, by using ambient lights (peripheral cuing system). Both systems were retrofitted into a test vehicle (2014 Toyota Camry). A within-subject experiment was conducted at the University of Michigan Mcity test-track facility.
Technical Paper

Evaluation of Different ADAS Features in Vehicle Displays

2019-04-02
2019-01-1006
The current study presents the results of an experiment on driver performance including reaction time, eye-attention movement, mental workload, and subjective preference when different features of Advanced Driver Assistance Systems (ADAS) warnings (Forward Collision Warning) are displayed, including different locations (HDD (Head-Down Display) vs HUD (Head-Up Display)), modality of warning (text vs. pictographic), and a new concept that provides a dynamic bird’s eye view for warnings. Sixteen drivers drove a high-fidelity driving simulator integrated with display prototypes of the features. Independent variables were displayed as modality, location, and dynamics of the warnings with driver performance as the dependent variable including driver reaction time to the warning, EORT (Eyes-Off-Road-Time) during braking after receiving the warning, workload and subject preference.
Technical Paper

Closed-Form Structural Stress Solutions for Spot Welds in Square Plates under Central Bending Conditions

2019-04-02
2019-01-1114
A new closed-form structural stress solution for a spot weld in a square thin plate under central bending conditions is derived based on the thin plate theory. The spot weld is treated as a rigid inclusion and the plate is treated as a thin plate. The boundary conditions follow those of the published solution for a rigid inclusion in a square plate under counter bending conditions. The new closed-form solution indicates that structural stress solution near the rigid inclusion on the surface of the plate along the symmetry plane is larger than those for a rigid inclusion in an infinite plate and a finite circular plate with pinned and clamped outer boundaries under central bending conditions. When the radius distance becomes large and approaches to the outer boundary, the new analytical stress solution approaches to the reference stress whereas the other analytical solutions do not.
Technical Paper

Finite Element Analyses of Structural Stresses near Dissimilar Spot Joints in Lap-Shear Specimens

2019-04-02
2019-01-1112
Structural stress distributions near nearly rigid, dissimilar and similar spot joints in lap-shear specimens are investigated by 3-D finite element analyses. A set of accurate closed-form structural stress solutions is first presented. The closed-form structural stress solutions were derived for a rigid inclusion in a square thin plate under various loading conditions with the weak boundary conditions along outer edges or semi-circular paths by satisfying the equilibrium conditions. Finite element analyses with different joint material behaviors, element types and mesh designs are conducted to examine the structural stress solutions near the spot joints in lap-shear specimens. The results of the finite element analyses indicate that the computational structural stress solutions on the edge of the joint depend on the joint material behavior, element type, and mesh design.
Technical Paper

Survey of Automotive Privacy Regulations and Privacy-Related Attacks

2019-04-02
2019-01-0479
Privacy has been a rising concern. The European Union has established a privacy standard called General Data Protection Regulation (GDPR) in May 2018. Furthermore, the Facebook-Cambridge Analytica data incident made headlines in March 2018. Data collection from vehicles by OEM platforms is increasingly popular and may offer OEMs new business models but it comes with the risk of privacy leakages. Vehicular sensor data shared with third-parties can lead to misuse of the requested data for other purposes than stated/intended. There exists a relevant regulation document introduced by the Alliance of Automobile Manufacturers (“Auto Alliance”), which classifies the vehicular sensors used for data collection as covered and non-sensitive parameters.
Technical Paper

Sensations Associated with Motion Sickness Response during Passenger Vehicle Operations on a Test Track

2019-04-02
2019-01-0687
Motion sickness in road vehicles may become an increasingly important problem as automation transforms drivers into passengers. The University of Michigan Transportation Research Institute has developed a vehicle-based platform to study motion sickness in passenger vehicles. A test-track study was conducted with 52 participants who reported susceptibility to motion sickness. The participants completed in-vehicle testing on a 20-minute scripted, continuous drive that consisted of a series of frequent 90-degree turns, braking, and lane changes at the U-M Mcity facility. In addition to quantifying their level of motion sickness on a numerical scale, participants were asked to describe in words any motion-sickness-related sensations they experienced.
Technical Paper

Modeling Static Load Distribution and Friction of Ball Bearings and BNAs: Towards Understanding the “Stick-Slip” of Rack EPAS

2019-04-02
2019-01-1240
Electric power assisted steering (EPAS) systems are widely adopted in modern vehicles to reduce the steering effort of drivers. In rack EPAS, assist torque is applied by a motor and transmitted through two key mechanical components: ball bearing and ball nut assembly (BNA) to turn the front wheels. Large combined load and manufacturing errors not only make it hard to accurately calculate the load distribution in the ball bearing and BNA for the purpose of sizing, but also make the friction behavior of EPAS gear complicated. Rack EPAS gear is well known to suffer from “stick-slip” (i.e., sticky feel sensed by the driver), which affects the user experience. “Stick-slip” is an extreme case of friction variation mainly coming from ball bearing and BNA. Finite Element Analysis (FEA) in commercial software like ANSYS is usually conducted to study the load distribution and friction of ball bearing and BNA.
Technical Paper

Personalized Driver Workload Estimation in Real-World Driving

2018-04-03
2018-01-0511
Drivers often engage in secondary in-vehicle activity that is not related to vehicle control. This may be functional and/or to relieve monotony. Regardless, drivers believe they can safely do so when their perceived workload is low. In this paper, we describe a data acquisition system and machine learning based algorithms to determine perceived workload. Data collected were from on-road driving in light and heavy traffic, and individual physiological measures were recorded while the driver also performed in-vehicle tasks. Initial results show how the workload function can be personalized to an individual, and what implications this may have for vehicle design.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets Made with Different Processing Conditions

2018-04-03
2018-01-1237
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets made with different processing conditions are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens with FDS joints without clearance hole and lap-shear specimens with stripped FDS joints with clearance hole were made and then tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints without clearance hole (with gap) and the stripped FDS joints with clearance hole under quasi-static and cyclic loading conditions. The fatigue failure mode of the FDS joints without clearance hole (with gap) in lap-shear specimens is similar to those with clearance hole. The fatigue lives of lap-shear specimens with FDS joints without clearance hole are lower than those with clearance hole for given load ranges under cyclic loading conditions.
Journal Article

Failure Mode and Fatigue Behavior of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses

2018-04-03
2018-01-1239
Failure mode and fatigue behavior of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets of different thicknesses are investigated based on the experimental results and a structural stress fatigue life estimation model. Lap-shear specimens of different thicknesses with FDS joints with clearance hole were made and tested under quasi-static and cyclic loading conditions. Optical micrographs show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under quasi-static loading conditions. Under quasi-static loading conditions, as the thickness increases, the FDS joint failed from the penetration of the screw head into the upper sheet to the failure of the screw between the two sheets. Optical micrographs also show the failure modes of the FDS joints with clearance hole in lap-shear specimens of different thicknesses under cyclic loading conditions.
Technical Paper

Mechanical Strength and Failure Mode of Flow Drill Screw Joints in Coach-Peel Specimens of Aluminum 6082-T6 Sheets of Different Thicknesses and Processing Conditions

2018-04-03
2018-01-0116
The mechanical strength and failure mode of flow drill screw (FDS) joints in coach-peel specimens of aluminum 6082-T6 sheets of three different thicknesses of 2.5, 2.8 and 3.0 mm and three different processing conditions under quasi-static loading conditions are investigated by experiments. The experimental results indicate that the mechanical strength and failure mode of FDS joints in coach-peel specimens are affected by the specimen thickness, clearance hole and stripping. The maximum load of a coach-peel specimen with an FDS joint with clearance hole increases as the thickness increases. For each of the thickness groups of 2.5, 2.8 and 3.0 mm, the maximum load of a coach-peel specimen with an FDS joint without clearance hole is lower than that with clearance hole. For the thickness group of 2.8 mm, the maximum load of a coach-peel specimen with a stripped FDS joint with clearance hole is lower than those of non-stripped ones with and without clearance hole.
Technical Paper

Varying Levels of Reality in Human Factors Testing: Parallel Experiments at Mcity and in a Driving Simulator

2017-03-28
2017-01-1374
Mcity at the University of Michigan in Ann Arbor provides a realistic off-roadway environment in which to test vehicles and drivers in complex traffic situations. It is intended for testing of various levels of vehicle automation, from advanced driver assistance systems (ADAS) to fully self-driving vehicles. In a recent human factors study of interfaces for teen drivers, we performed parallel experiments in a driving simulator and Mcity. We implemented driving scenarios of moderate complexity (e.g., passing a vehicle parked on the right side of the road just before a pedestrian crosswalk, with the parked vehicle partially blocking the view of the crosswalk) in both the simulator and at Mcity.
Technical Paper

Characterizing Vehicle Occupant Body Dimensions and Postures Using a Statistical Body Shape Model

2017-03-28
2017-01-0497
Reliable, accurate data on vehicle occupant characteristics could be used to personalize the occupant experience, potentially improving both satisfaction and safety. Recent improvements in 3D camera technology and increased use of cameras in vehicles offer the capability to effectively capture data on vehicle occupant characteristics, including size, shape, posture, and position. In previous work, the body dimensions of standing individuals were reliably estimated by fitting a statistical body shape model (SBSM) to data from a consumer-grade depth camera (Microsoft Kinect). In the current study, the methodology was extended to consider seated vehicle occupants. The SBSM used in this work was developed using laser scan data gathered from 147 children with stature ranging from 100 to 160 cm and BMI from 12 to 27 kg/m2 in various sitting postures.
Journal Article

Stress-Strain Relations for Nodular Cast Irons with Different Graphite Volume Fractions under Tension and Compression

2017-03-28
2017-01-0399
In this paper, the results of finite element analyses for nodular cast irons with different volume fractions of graphite particles based on an axisymmetric unit cell model under uniaxial compression and tension are presented. The experimental compressive stress-strain data for a nodular cast iron with the volume fraction of graphite particles of 4.5% are available for use as the baseline material data. The elastic-plastic stress-strain relation for the matrix of the cast iron is estimated based on the experimental compressive stress-strain curve of the cast iron with the rule of mixture. The elastic-plastic stress-strain relation for graphite particles is obtained from the literature. The compressive stress-strain curve for the cast iron based on the axisymmetric unit cell model with the use of the von Mises yield function was then obtained computationally and compared well with the compressive stress-strain relation obtained from the experiment.
Journal Article

Closed-Form Structural Stress Solutions for Fatigue Life Estimations of Flow Drill Screw Joints in Lap-Shear Specimens of Aluminum 6082-T6 Sheets

2017-03-28
2017-01-0470
Closed-form structural stress solutions are investigated for fatigue life estimations of flow drill screw (FDS) joints in lap-shear specimens of aluminum 6082-T6 sheets with and without clearance hole based on three-dimensional finite element analyses. The closed-form structural stress solutions for rigid inclusions under counter bending, central bending, in-plane shear and in-plane tension are first presented. Three-dimensional finite element analyses of the lap-shear specimens with FDS joints without and with gap (with and without clearance hole) are then presented. The results of the finite element analyses indicate that the closed-form structural stress solutions are quite accurate at the critical locations near the FDS joints in lap-shear specimens without and with gap (with and without clearance hole) for fatigue life predictions.
Journal Article

Finite Element Analyses of Stress Intensity Factor Solutions for Discontinuous Gas Metal Arc Welds under Lap-Shear Loading Conditions

2017-03-28
2017-01-0475
The distributions of the mode I and mode II stress intensity factor solutions along the fronts of the pre-existing cracks of continuous and discontinuous gas metal arc welds in lap-shear specimens are investigated by three-dimensional finite element analyses. Two-dimensional plane strain finite element analyses were first carried out in order to obtain the computational stress intensity factor solutions for the idealized and realistic weld geometries as the references. Further, the stress intensity factor solutions for realistic welds obtained from the two-dimensional finite element analyses are presented for unequal sheet thicknesses for future engineering applications. Then the stress intensity factor solutions for continuous and discontinuous welds were obtained by three-dimensional finite element analyses.
Technical Paper

Robust Prediction of Lane Departure Based on Driver Physiological Signals

2016-04-05
2016-01-0115
Lane change events can be a source of traffic accidents; drivers can make improper lane changes for many reasons. In this paper we present a comprehensive study of a passive method of predicting lane changes based on three physiological signals: electrocardiogram (ECG), respiration signals, and galvanic skin response (GSR). Specifically, we discuss methods for feature selection, feature reduction, classification, and post processing techniques for reliable lane change prediction. Data were recorded for on-road driving for several drivers. Results show that the average accuracy of a single driver test was approx. 70%. It was greater than the accuracy for each cross-driver test. Also, prediction for younger drivers was better.
X