Refine Your Search

Topic

Author

Search Results

Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2016-32-0041
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Optimizing Seat Belt and Airbag Designs for Rear Seat Occupant Protection in Frontal Crashes

2017-11-13
2017-22-0004
Recent field data have shown that the occupant protection in vehicle rear seats failed to keep pace with advances in the front seats likely due to the lack of advanced safety technologies. The objective of this study was to optimize advanced restraint systems for protecting rear seat occupants with a range of body sizes under different frontal crash pulses. Three series of sled tests (baseline tests, advanced restraint trial tests, and final tests), MADYMO model validations against a subset of the sled tests, and design optimizations using the validated models were conducted to investigate rear seat occupant protection with 4 Anthropomorphic Test Devices (ATDs) and 2 crash pulses.
Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

2016-11-07
2016-22-0014
Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
Technical Paper

Integration of Active and Passive Safety Technologies - A Method to Study and Estimate Field Capability

2015-11-09
2015-22-0010
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset.
Technical Paper

Response and Tolerance of Female and/or Elderly PMHS to Lateral Impact

2014-11-10
2014-22-0015
Eight whole fresh-frozen cadavers (6 female, 2 male) that were elderly and/or female were laterally impacted using UMTRI's dual-sled side-impact test facility. Cadavers were not excluded on the basis of old age or bone diseases that affect tolerance. A thinly padded, multi-segment impactor was used that independently measured force histories applied to the shoulder, thorax, abdomen, greater trochanter, iliac wing, and femur of each PMHS. Impactor plates were adjusted vertically and laterally toward the subject so that contact with body regions occurred simultaneously and so that each segment contacted the same region on every subject. This configuration minimized the effects of body shape on load sharing between regions. Prior to all tests, cadavers were CT scanned to check for pre-existing skeletal injuries. Cadavers were excluded if they had pre-existing rib fractures or had undergone CPR.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

2013-11-11
2013-22-0015
Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

Development of a Finite Element Model to Study the Effects of Muscle Forces on Knee-Thigh-Hip Injuries in Frontal Crashes

2008-11-03
2008-22-0018
A finite element (FE) model with knee-thigh-hip (KTH) and lower-extremity muscles has been developed to study the potential effects of muscle tension on KTH injuries due to knee bolster loadings in frontal crashes. This model was created by remeshing the MADYMO human lower-extremity FE model to account for regional differences in cortical bone thickness, trabecular bone, cortical bone with directionally dependent mechanical properties and Tsai-Wu failure criteria, and articular cartilage. The model includes 35 Hill-type muscles in each lower extremity with masses based on muscle volume. The skeletal response of the model was validated by simulating biomechanical tests without muscle tension, including cadaver skeletal segment impact tests documented in the literature as well as recent tests of seated whole cadavers that were impacted using knee-loading conditions similar to those produced in FMVSS 208 testing.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

2007-06-12
2007-01-2482
Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Biomechanics of 4-Point Seat Belt Systems in Farside Impacts

2006-11-06
2006-22-0012
The biomechanical behavior of a harness style 4-point seat belt system in farside impacts was investigated through dummy and post mortem human subject tests. Specifically, this study was conducted to evaluate the effect of the inboard shoulder belt portion of a 4-point seat belt on the risk of vertebral and soft-tissue neck injuries during simulated farside impacts. Two series of sled tests simulating farside impacts were completed with crash dummies of different sizes, masses and designs to determine the forces and moments on the neck associated with loading of the shoulder belt. The tests were also performed to help determine the appropriate dummy to use in further testing. The BioSID and SID-IIs reasonably simulated the expected kinematics response and appeared to be reasonable dummies to use for further testing. Analysis also showed that dummy injury measures were lower than injury assessment reference values used in development of side impact airbags.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

Development of ATD Installation Procedures Based on Rear-Seat Occupant Postures

2005-11-09
2005-22-0018
The initial positioning of anthropomorphic test devices (ATDs) can influence the outcomes of crash tests. Current procedures for positioning ATDs in rear seats are not based on systematic studies of passenger postures. This paper compares the postures of three side-impact ATDs to the postures of 24 men and women in three vehicle rear seats and 16 laboratory conditions. When positioned using current procedures, the locations of the ES-2 and SID-HIII ATD heads are generally rearward of those observed with similar-size passengers. The SID-IIs head locations matched the expected locations of heads of passengers of similar size more closely. As the seat back angle was increased, people reclined less than the ATDs. Based on these findings, a new ATD positioning procedure for rear seats was developed. The primary objective of the new procedure is to place the ATD head in the location that is most likely for people of similar size.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Effects of Hip Posture on the Frontal Impact Tolerance of the Human Hip Joint

2003-10-27
2003-22-0002
… The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal impacts. To investigate this hypothesis, dynamic hip tolerance tests were conducted on the left and right hips of 22 unembalmed cadavers. In these tests, the knee was dynamically loaded in the direction of the long axis of the femur and the pelvis was fixed to minimize inertial effects. Thirty-five successful hip tolerance tests were conducted. Twenty-five of these tests were performed with the hip oriented in a typical posture for a seated driver, or neutral posture, to provide a baseline measure of hip tolerance. The effects of hip posture on hip tolerance were quantified using a paired-comparison experimental design.
Technical Paper

Knee, Thigh and Hip Injury Patterns for Drivers and Right Front Passengers in Frontal Impacts

2003-03-03
2003-01-0164
Late model passenger cars and light trucks incorporate occupant protection systems with airbags and knee restraints. Knee restraints have been designed principally to meet the unbelted portions of FMVSS 208 that require femur load limits of 10-kN to be met in barrier crashes up to 30 mph, +/- 30 degrees utilizing the 50% male Anthropomorphic Test Device (ATD). In addition, knee restraints provide additional lower-torso restraint for belt-restrained occupants in higher-severity crashes. An analysis of frontal crashes in the University of Michigan Crash Injury Research and Engineering Network (UM CIREN) database was performed to determine the influence of vehicle, crash and occupant parameters on knee, thigh, and hip injuries. The data sample consists of drivers and right front passengers involved in frontal crashes who sustained significant injuries (Abbreviated Injury Scale [AIS] ≥ 3 or two or more AIS ≥ 2) to any body region.
Technical Paper

A Method for Measuring the Field of View in Vehicle Mirrors

2003-03-03
2003-01-0297
A new method is presented for physically measuring drivers' field of view in rearview mirrors. A portable coordinate measurement apparatus (FARO Arm) is used to measure the mirror locations, contours, and curvature. Measurements of the driver's head and eye locations while looking into each mirror are also made. Raytracing is used to map the two- or three-dimensional field of view in each mirror. The method differentiates between monocular, binocular, and ambinocular fields of view, and can account for head movements. This method has been applied to passenger cars, light trucks, and heavy trucks to document how drivers aim their mirrors during normal use.
Technical Paper

The Tolerance of the Human Hip to Dynamic Knee Loading

2002-11-11
2002-22-0011
Based on an analysis of the National Automotive Sampling System (NASS) database from calendar years 1995-2000, over 30,000 fractures and dislocations of the knee-thigh-hip (KTH) complex occur in frontal motor-vehicle crashes each year in the United States. This analysis also shows that the risk of hip injury is generally higher than the risks of knee and thigh injuries in frontal crashes, that hip injuries are occurring to adult occupants of all ages, and that most hip injuries occur at crash severities that are equal to, or less than, those used in FMVSS 208 and NCAP testing. Because previous biomechanical research produced mostly knee or distal femur injuries, and because knee and femur injuries were frequently documented in early crash investigation data, the femur has traditionally been viewed as the weakest part of the KTH complex.
Technical Paper

A Centrifuge Concept for Measuring the Rollover Threshold of Light-Duty Vehicles

2002-05-07
2002-01-1603
Various means for measuring a vehicle's roll stability performance are considered in terms of the pertinence of their test conditions to the rollover crash record, the practicality and quality of the measurement, and their ability to span the performance range of the population of light-duty vehicles. Classical static measures as well as the so-called “maneuver-type” tests that have been under extensive study by the U.S. Dept. of Transportation are specifically addressed. In light of limitations facing the existing methods, the concept of a centrifuge test device is introduced and discussed. The apparatus is comprised of a relatively large machine that mounts a full-sized vehicle tangent to the rotation of a radial arm which revolves at a controlled angular rate. The minimum steady speed of rotation that induces a rollover response in the mounted vehicle corresponds to the static rollover threshold, in units of lateral (or centripetal) acceleration.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Methods for In-Vehicle Measurement of Truck Driver Postures

2001-11-12
2001-01-2821
Effective application of human figure models to truck interior design requires accurate data on the postures and positions of truck drivers. Errors in positioning of figure models propagate to errors in reach, visibility, and other analyses. This paper describes methods used in a recent study to measure in-vehicle driving postures in Class 6, 7, and 8 trucks. A three-dimensional coordinate measurement machine was used to measure body landmark locations after a driver completed a short road course. The data were used to validate posture-prediction models developed in a previous laboratory study. Vehicle calibration, driver selection, and testing methods are reviewed.
X