Refine Your Search

Topic

Search Results

Technical Paper

Integration of Active and Passive Safety Technologies - A Method to Study and Estimate Field Capability

2015-11-09
2015-22-0010
The objective of this study is to develop a method that uses a combination of field data analysis, naturalistic driving data analysis, and computational simulations to explore the potential injury reduction capabilities of integrating passive and active safety systems in frontal impact conditions. For the purposes of this study, the active safety system is actually a driver assist (DA) feature that has the potential to reduce delta-V prior to a crash, in frontal or other crash scenarios. A field data analysis was first conducted to estimate the delta-V distribution change based on an assumption of 20% crash avoidance resulting from a pre-crash braking DA feature. Analysis of changes in driver head location during 470 hard braking events in a naturalistic driving study found that drivers’ head positions were mostly in the center position before the braking onset, while the percentage of time drivers leaning forward or backward increased significantly after the braking onset.
Technical Paper

Effects of Driver Characteristics on Seat Belt Fit

2013-11-11
2013-22-0002
A laboratory study of posture and belt fit was conducted with 46 men and 51 women, 61% of whom were age 60 years or older and 32% age 70 years or older. In addition, 28% of the 97 participants were obese, defined as body mass index ≥ 30 kg/m2. A mockup of a passenger vehicle driver's station was created and five belt anchorage configurations were produced by moving the buckle, outboard-upper (D-ring), and outboard-lower anchorages. An investigator recorded the three-dimensional locations of landmarks on the belt and the participant's body using a coordinate measurement machine. The location of the belt with respect to the underlying skeletal structures was analyzed, along with the length of belt webbing. Using linear regression models, an increase in age from 20 to 80 years resulted in the lap belt positioned 18 mm further forward relative to the pelvis, 26 mm greater lap belt webbing length, and 19 mm greater shoulder belt length.
Technical Paper

Factors Associated With Abdominal Injury in Frontal, Farside, and Nearside Crashes

2010-11-03
2010-22-0005
The NASS-CDS (1998-2008) and CIREN datasets were analyzed to identify factors contributing to abdominal injury in crash environments where belt use and airbag deployment are common. In frontal impacts, the percentage of occupants sustaining abdominal injury is three times higher for unbelted compared to belted front-row adult occupants (p≺0.0001) at both AIS2+ and AIS3+ injury levels. Airbag deployment does not substantially affect the percentage of occupants who sustain abdominal injuries in frontal impacts (p=0.6171), while belt use reduces the percentage of occupants sustaining abdominal injury in both nearside and farside crashes (p≺0.0001). Right-front passengers in right-side impacts have the highest risk (1.91%) of AIS 3+ abdominal injury (p=0.03). The percentage of occupants with AIS 3+ abdominal injuries does not vary with age for frontal, nearside, or farside impacts.
Technical Paper

Interactions of Out-of-Position Small-Female Surrogates with a Depowered Driver Airbag

2008-11-03
2008-22-0008
The objectives of this study were to examine the response, repeatability, and injury predictive ability of the Hybrid III small-female dummy to static out-of-position (OOP) deployments using a depowered driver-side airbag. Five dummy tests were conducted in two OOP configurations by two different laboratories. The OOP configurations were nose-on-rim (NOR) and chest-on-bag (COB). Four cadaver tests were conducted using unembalmed small-female cadavers and the same airbags used in the dummy tests under similar OOP conditions. One cadaver test was designed to increase airbag loading of the face and neck (a forehead-on-rim, or FOR test). Comparison between the dummy tests of Lab 1 and of Lab 2 indicated the test conditions and results were repeatable. In the cadaver tests no skull fractures or neck injuries occurred. However, all four cadavers had multiple rib fractures.
Technical Paper

Modeling Vehicle Ingress and Egress Using the Human Motion Simulation Framework

2008-06-17
2008-01-1896
The ease of getting into and out of passenger cars and light trucks is a critical component of customer acceptance and product differentiation. In commercial vehicles, the health and safety of drivers is affected by the design of the steps and handholds they use to get into and out of the cab. Ingress/egress assessment appears to represent a substantial application opportunity for digital human models. The complexity of the design space and the range of possible biomechanical and subjective measures of interest mean that developing useful empirical models is difficult, requiring large-scale subject testing with physical mockups. Yet, ingress and egress motions are complex and strongly affected by the geometric constraints and driver attributes, posing substantial challenges in creating meaningful simulations using figure models.
Technical Paper

Driver Status and Implications for Crash Safety

2006-10-16
2006-21-0028
Almost a million people are killed worldwide each year in motor vehicle crashes, over 42,000 of them in the U.S. Human/driver error (or induced error) is the most commonly identified contributing cause according to crash studies, especially studies conducted in the U.S. Accordingly, if crashes are to be reduced, a human-centered approach is needed. As part of its Intelligent Transportation Systems program, the U.S. Department of Transportation (U.S. DOT) is funding several major projects (e.g., VII, IVBSS) concerned with active safety, warnings, and communications. As part of these and other projects, several meta-issues have arisen that deserve further attention.
Technical Paper

Considering Driver Balance Capability in Truck Shifter Design

2006-07-04
2006-01-2360
A person's ability to perform a task is often limited by their ability to maintain balance. This is particularly true in lateral work performed in seated environments. For a truck driver operating the shift lever of a manual transmission, excessive shift forces can necessitate pulling on the steering wheel with the other hand to maintain balance, creating a potentially unsafe condition. An analysis of posture and balance in truck shifter operation was conducted using balance limits to define the acceptable range of shifter locations. The results are dependent on initial driver position, reach postures, and shoulder strength. The effects of shifter force direction and magnitude were explored to demonstrate the application of the analysis method. This methodology can readily be applied to other problems involving hand-force exertions in seated environments.
Technical Paper

Parking Crashes and Parking Assistance System Design: Evidence from Crash Databases, the Literature, and Insurance Agent Interviews

2006-04-03
2006-01-1685
This paper (1) summarizes previous human factors/safety research on parking (8 studies, mostly over 20 years old), (2) provides statistics for 10,400 parking-related crashes in Michigan from 2000-2002, and (3) summarizes interviews with 6 insurance agents concerning parking crashes. These sources indicate: 1 About 1/2 to 3/4 of parking crashes involve backing, often into another moving vehicle while emerging from a parking stall. 2 Eight-and-a-half foot-wide stalls had higher crash rates than wider stalls. 3 Most parallel parking crashes occur on major streets, not minor streets. 4 Lighting and driver impairment were minor factors in parking crashes.
Technical Paper

Geometric Visibility of Mirror Mounted Turn Signals

2005-04-11
2005-01-0449
Turn signals mounted on exterior rearview mirrors are increasingly being used as original equipment on passenger cars and light trucks. The potential for mirror-mounted turn signals (MMTS) to improve the geometric visibility of turn signals is examined in this paper. A survey of U.S. and UN-ECE regulations showed that the turn signals of a vehicle that is minimally compliant with U.S. regulations are not visible to a driver of a nearby vehicle in an adjacent lane. Measurements of mirror location and window geometry were made on 74 passenger cars and light trucks, including 38 vehicles with fender-mounted turn signals (FMTS). These data were combined with data on driver eye locations from two previous studies to assess the relative visibility of MMTS and conventional signals. Simulations were conducted to examine the potential for signals to be obstructed when a driver looks laterally through the passenger-side window.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Effects of Hip Posture on the Frontal Impact Tolerance of the Human Hip Joint

2003-10-27
2003-22-0002
… The pattern of left- and right-side hip injuries to front-seat occupants involved in offset and angled frontal crashes suggests that hip posture (i.e., the orientation of the femur relative to the pelvis) affects the fracture/dislocation tolerance of the hip joint to forces transmitted along the femur during knee-to-knee-bolster loading in frontal impacts. To investigate this hypothesis, dynamic hip tolerance tests were conducted on the left and right hips of 22 unembalmed cadavers. In these tests, the knee was dynamically loaded in the direction of the long axis of the femur and the pelvis was fixed to minimize inertial effects. Thirty-five successful hip tolerance tests were conducted. Twenty-five of these tests were performed with the hip oriented in a typical posture for a seated driver, or neutral posture, to provide a baseline measure of hip tolerance. The effects of hip posture on hip tolerance were quantified using a paired-comparison experimental design.
Technical Paper

A Method for Measuring the Field of View in Vehicle Mirrors

2003-03-03
2003-01-0297
A new method is presented for physically measuring drivers' field of view in rearview mirrors. A portable coordinate measurement apparatus (FARO Arm) is used to measure the mirror locations, contours, and curvature. Measurements of the driver's head and eye locations while looking into each mirror are also made. Raytracing is used to map the two- or three-dimensional field of view in each mirror. The method differentiates between monocular, binocular, and ambinocular fields of view, and can account for head movements. This method has been applied to passenger cars, light trucks, and heavy trucks to document how drivers aim their mirrors during normal use.
Technical Paper

Characterization of Driver Seatbelt Donning Behavior

2002-03-04
2002-01-0783
Improvements in the accessibility and ease of use of seatbelts require an understanding of driver belt donning behavior. Participants in a study of driving posture were videotaped as they put on their belts in their own vehicles, either an SUV or a midsize sedan. The participants were unaware that the purpose of the videotaping was related to the seatbelt. Videos from 95 men and women were analyzed to identify several categories of belt-donning behavior and to analyze the influence of body dimensions. The results have applicability to seatbelt system design, including the use of human figure models to assess seatbelt accessibility.
Technical Paper

Methods for In-Vehicle Measurement of Truck Driver Postures

2001-11-12
2001-01-2821
Effective application of human figure models to truck interior design requires accurate data on the postures and positions of truck drivers. Errors in positioning of figure models propagate to errors in reach, visibility, and other analyses. This paper describes methods used in a recent study to measure in-vehicle driving postures in Class 6, 7, and 8 trucks. A three-dimensional coordinate measurement machine was used to measure body landmark locations after a driver completed a short road course. The data were used to validate posture-prediction models developed in a previous laboratory study. Vehicle calibration, driver selection, and testing methods are reviewed.
Technical Paper

Improved ATD Positioning Procedures

2001-03-05
2001-01-0117
Current anthropomorphic test device (ATD) positioning procedures for drivers and front-seat passengers place the crash dummy within the vehicle by reference to the seat track. Midsize-male ATDs are placed at the center of the fore-aft seat track adjustment range, while small-female and large-male ATDs are placed at the front and rear of the seat track, respectively. Research on occupant positioning at UMTRI led to the development of a new ATD positioning procedure that places the ATDs at positions more representative of the driving positions of people who match the ATD's body dimensions. This paper presents a revised version of the UMTRI ATD positioning procedure. The changes to the procedure improve the ease and repeatability of ATD positioning while preserving the accuracy of the resulting ATD positions with respect to the driving positions of people matching the ATD anthropometry.
Technical Paper

Child Injuries & Fatalities - Who is Behind the Wheel?

2001-03-05
2001-01-1305
Recent crash data was used to evaluate the safety performance of drivers who transport children. The age difference between drivers and children was found to be an important predictor of crash-related driving behavior and choices. Also, certain driver behaviors and choices when transporting children were identified as creating elevated risk. This study provides information that parents might use to reduce risk when their children are riding with other drivers. The results may also be of interest to professionals concerned with graduated licensing and the establishment and enforcement of laws relating to child endangerment such as drinking and driving with child passengers.
Technical Paper

Methods for Laboratory Investigation of Truck and Bus Driver Postures

2000-12-04
2000-01-3405
Few studies have systematically examined the effects of truck and bus workstation geometry on driver posture and position. This paper presents methods for determining drivers' postural responses and preferred component locations using a reconfigurable vehicle mockup. Body landmark locations recorded using a three-dimensional digitizer are used to compute a skeletal-linkage representation of the drivers' posture. A sequential adjustment procedure is used to determine the preferred positions and orientations of key components, including the seat, steering wheel, and pedals. Data gathered using these methods will be used to create new design tools for trucks and buses, including models of driver-selected seat position, eye location, and needed component adjustment ranges. The results will also be used to create accurate posture-prediction models for use with human modeling software.
Technical Paper

Effective Utilization of In-Vehicle Information: Integrating Attractions and Distractions

2000-11-01
2000-01-C011
The modern passenger vehicle contains numerous sources of information. In one sense, all of the messages sent from in-vehicle devices are attractive, at least from the viewpoint of the designer who has incorporated them into the vehicle to make driving more pleasurable and safer. Yet in another sense, these same messages can present distractions to the driver resulting in diminished driving pleasure and possibly unsafe vehicle control. Thus, a message that at one moment might be attractive and useful to the driver, at a different moment, especially one where attention must be focused outside the vehicle, becomes an unwanted distraction. This paper reviews three sources of in-vehicle information: advanced traveler information systems, safety and collision avoidance systems, and convenience and entertainment systems. A framework for integrating these sub-systems is outlined based upon human-centered design principles and functional characteristics of systems.
Technical Paper

Anthropometric and Postural Variability: Limitations of the Boundary Manikin Approach

2000-06-06
2000-01-2172
Human figure models are commonly used to facilitate ergonomic assessments of vehicle driver stations and other workplaces. One routine method of workstation assessment is to conduct a suite of ergonomic analyses using a family of boundary manikins, chosen to represent a range of anthropometric extremes on several dimensions. The suitability of the resulting analysis depends both on the methods by which the boundary manikins are selected and on the methods used to posture the manikins. The automobile driver station design problem is used to examine the relative importance of anthropometric and postural variability in ergonomic assessments. Postural variability is demonstrated to be nearly as important as anthropometric variability when the operator is allowed a substantial range of component adjustment. The consequences for boundary manikin procedures are discussed, as well as methods for conducting accurate and complete assessments using the available tools.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

2000-06-06
2000-01-2180
Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
X