Refine Your Search

Topic

Search Results

Viewing 1 to 20 of 20
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

2007-06-12
2007-01-2482
Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Parking Crashes and Parking Assistance System Design: Evidence from Crash Databases, the Literature, and Insurance Agent Interviews

2006-04-03
2006-01-1685
This paper (1) summarizes previous human factors/safety research on parking (8 studies, mostly over 20 years old), (2) provides statistics for 10,400 parking-related crashes in Michigan from 2000-2002, and (3) summarizes interviews with 6 insurance agents concerning parking crashes. These sources indicate: 1 About 1/2 to 3/4 of parking crashes involve backing, often into another moving vehicle while emerging from a parking stall. 2 Eight-and-a-half foot-wide stalls had higher crash rates than wider stalls. 3 Most parallel parking crashes occur on major streets, not minor streets. 4 Lighting and driver impairment were minor factors in parking crashes.
Technical Paper

Development of Surrogate Child Restraints for Testing Occupant Sensing and Classification Systems

2004-03-08
2004-01-0843
This paper describes the design and development of a family of surrogate child restraints that are intended for use in developing and testing occupant sensing and classification systems. Detailed measurements were made of the geometry and mass distribution characteristics of 34 commercial child restraints, including infant restraints, convertibles, combination restraints, and boosters. The restraints were installed in three test seats with appropriately sized crash dummies to obtain data on seat-surface pressure patterns and the position and orientation of the restraint with belt loading. The data were used to construct two surrogates with removable components. The convertible surrogate can be used to represent a rear-facing infant restraint with or without a base, a rear-facing convertible, or a forward-facing convertible. The booster surrogate can represent a high-back belt-positioning booster, a backless booster, or a forward-facing-only restraint with a five-point harness.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

2001-11-12
2001-01-2726
The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Emulating the Behavior of Truck Drivers in the Longitudinal Control of Headway

1999-11-15
1999-01-3706
This paper describes control system and psychological concepts enabling the development of a simulation model suitable for use in emulating driver performance in situations involving the longitudinal control of the distance and headway-time to a preceding vehicle. The developed model has mathematical expressions and relationships pertaining to the driver's skill in operating the brake and accelerator (“inverse dynamics”) and the driver's perceptual and decision-making capabilities (“desired dynamics”). Simulation results for driving situations involving braking and accelerating are presented to aid in understanding the research work.
Technical Paper

Computer Synthesis of Light Truck Ride Using a PC Based Simulation Program

1999-05-17
1999-01-1796
An easy-to-use computer program for ride analysis was recently developed. The result of this effort-RideSim- predicts time history responses, power spectral density (PSD) functions, and a driver oriented measure of ride comfort. RideSim employs a graphical user interface (called SGUI, for simulation graphical user interface) to control data preparation, simulation execution, animation, and data analysis. The SGUI allows the user to operate the program by pointing and clicking with a mouse, rather than by using cumbersome text commands. It also manages the vehicle dynamics parameters, the resulting simulation output, and results of post-processing analyses (i.e., PSD analysis). The vehicle dynamics model was generated with the AUTOSIM multibody dynamics program. This program uses Kane’s Method and computer algebra to create a parametric dynamics simulation that can be easily linked to the SGUI.
Technical Paper

Methods for Laboratory Investigation of Airbag-Induced Thermal Skin Burns

1999-03-01
1999-01-1064
Two new techniques for investigating the thermal skin-burn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airbag thermal burn potential. Measurements from the reduced-volume procedure are complemented by data obtained using two gas-jet simulators, called heatguns. Gas is vented in controlled bursts from a large, heated, pressurized tank of gas onto a target surface. Heat flux measurements on the target surface have been used to develop quantitative models of the relationships between gas jet characteristics and burn potential.
Technical Paper

Facial, Periorbital and Ocular Injuries Related to Steering-Wheel Airbag Deployments

1997-02-24
970490
To determine the frequency of facial injuries from steering-wheel airbag deployments, 540 consecutive steering-wheel airbag deployments, investigated by the University of Michigan Transportation Research Institute (UMTRI) personnel, were reviewed. About 1 in 3 drivers sustain an injury to the face. Injuries to the area surrounding the eye (periorbital) or to the eyeball (ocular) rarely occur. The frequencies of facial or ocular injuries are the same for belted and unbelted drivers. Drivers of short stature had a higher frequency of facial injury. Females sustained ocular injuries more frequently than males. Untethered airbags were not overly involved in drivers with an ocular injury. No specific make or model car were overly represented in the ocular injury cases.
Technical Paper

Modeling Assumptions for Realistic Multibody Simulations of the Yaw and Roll Behavior of Heavy Trucks

1996-02-01
960173
This paper summarizes how modem computer simulation methods have been used to develop a “fleet” of heavy truck simulation programs called TruckSim Kinematical and dynamical modeling assumptions appropriate for simulating the general three-dimensional behavior of heavy trucks are described to the extent needed to construct such a model in a multibody program such as the AUTOS1M symbolic code generator Alternative kinematical assumptions were tested and compared to determine their influence on the simulation efficiency and accuracy As part of the validation, simulation results for the new programs were compared with results obtained with an older program that was developed by hand
Technical Paper

Practical Aspects of Prototyping Instrument Clusters

1996-02-01
960532
This paper describes an ongoing effort to develop computer-simulated instrumentation for the UMTRI Driver Interface Research Simulator. The speedometer, tachometer, engine and fuel gauges, along with warning lights are back projected onto a screen in front of the driver. The image is generated by a Macintosh running LabVIEW. Simulated instrumentation (instead of a production cluster) was provided so that new display designs can be rapidly generated and tested. This paper addresses the requirements for prototyping software, the advantages and disadvantages of the packages available, and the UMTRI implementation of the software, and its incorporation into the driving simulator.
Technical Paper

Driver Perceptual Adaptation to Nonplanar Rearview Mirrors

1996-02-01
960791
This study examined perceptual adaptation to nonplanar (spherical convex and aspheric) rearview mirrors. Subjects made magnitude estimates of the distance to a car seen in a rearview mirror. Three different mirrors were used: plane, aspheric (with a large spherical section having a radius of 1400 mm), and simple convex (with a radius of 1000 mm). Previous research relevant to perceptual adaptation to nonplanar mirrors was reviewed. It was argued that, in spite of some cases of explicit interest in the process of learning to use nonplanar mirrors, previous research has not adequately addressed the possibility of perceptual adaptation. The present experiment involved three phases: (1) a pretest phase in which subjects made distance judgments but received no feedback, (2) a training phase in which they made judgments and did receive feedback, and (3) a posttest phase with the same procedure as the pretest phase.
Technical Paper

Some Effects of Lumbar Support Contour on Driver Seated Posture

1995-02-01
950141
An appropriately contoured lumbar support is widely regarded as an essential component of a comfortable auto seat. A frequently stated objective for a lumbar support is to maintain the sitter's lumbar spine in a slightly extended, or lordotic, posture. Although sitters have been observed to sit with substantial lordosis in some short-duration testing, long-term postural interaction with a lumbar support has not been documented quantitatively in the automotive environment. A laboratory study was conducted to investigate driver posture with three seatback contours. Subjects† from four anthropometric groups operated an interactive laboratory driving simulator for one-hour trials. Posture data were collected by means of a sonic digitizing system. The data identify driver-selected postures over time for three lumbar support contours. An increase of 25 mm in the lumbar support prominence from a flat contour did not substantially change lumbar spine posture.
Technical Paper

A Simulation Graphical User Interface for Vehicle Dynamics Models

1995-02-01
950169
This paper describes the architecture and use of a simulation graphical user interface (SGUI) that uses new (1990's) computer hardware and software concepts to provide an easy-to-use environment for simulating vehicle dynamics. The user interacts with windows, buttons, and pop-up menus, in a multitasking environment such as UNIX, Windows®, or Mac OS®. The SGUI reduces the level of computer expertise required of the user. Most information is shown in a graphic context, and “what if?” options are selected by clicking buttons and selecting from pop-up menus. The SGUI is organized as a data base of vehicles, vehicle parts, vehicle inputs, and simulation results. The organization makes it easy for users to assemble the component data needed to (1) simulate new systems, (2) run simulation programs automatically, and (3) view the results graphically. The SGUI is assembled from low-cost software components.
Technical Paper

Comparison of Occupant Restraints Based on Injury-Producing Contact Rates

1994-11-01
942219
The objective of this analysis is to evaluate the effectiveness of restraints in preventing injury-producing contacts of specific body regions, such as the head or chest, with specific interior components. In order to make comparisons by restraint use, an injury rate is calculated as the number of injury-producing contacts per hundred involved occupants. Data, including the Occupant Injury Classification (OIC), are from the 1988-92 National Accident Sampling System (NASS) Crashworthiness Data System (CDS). The analysis presented is limited to passenger vehicle drivers in towaway, frontal impacts. Injury-producing contact rates are compared for four restraint configurations: unrestrained, three-point belted, driver airbag alone, and driver airbag plus three-point belt. For each restraint configuration, contact rates are compared by three categories of injury severity, AIS 1, AIS 2, and AIS 3-6, body region injured, and contact area producing the injury.
Technical Paper

Characterizing the Road-Damaging Dynamics of Truck Tandem Suspensions

1993-11-01
932994
The road damage caused by heavy trucks is accentuated by the dynamic loads excited by roughness in the road. Simulation models of trucks are used to predict dynamic wheel loads, but special models are required for tandem suspensions. Parameter values to characterize tandem suspension systems can be measured quasi-statically on a suspension measurement facility, but it is not known how well they fit dynamic models. The dynamic behavior of leaf-spring and air-spring tandem suspensions were measured on a hydraulic road simulator using remote parameter characterization techniques. The road simulator tests were duplicated with computer simulations of these suspensions based on quasi-static parameter measurements to compare dynamic load performance. In the case of the walking-beam suspension, simulated performance on the road was compared to experimental test data to evaluate the ability of the walking-beam model to predict dynamic load.
Technical Paper

Simple Predictors of the Performance of A-trains

1993-11-01
932995
Figures of merit describing the performance qualities of multiple-trailer vehicle combinations (for example, rearward amplification) are usually determined from either full-scale vehicle testing or computer simulation analysis. Either method is expensive and time consuming, and restricted in practice to organizations with specialized equipment and engineering skills. One goal of a recent study, conducted by the University of Michigan Transportation Research Institute and sponsored by the Federal Highway Administration, was to use basic vehicle properties to develop simple formulations for estimating the performance qualities of multiple-trailer vehicle combinations. Several hundred computer simulation runs were made using UMTRI's Yaw/Roll program. Five common double-trailer vehicle configurations (defined by trailer lengths and axle configurations) were studied. Each of the five vehicles was subject to fifteen parameter variations.
Technical Paper

Repeatability of the Tilt-Table Test Method

1993-03-01
930832
Tilt-table testing is one means of quantifying the static roll stability of highway vehicles. By this technique, a test vehicle is subjected to a physical situation analogous to that experienced in a steady state turn. Although the analogy is not perfect, the simplicity and fidelity of the method make it an attractive means for estimating static rollover threshold. The NHTSA has suggested the tilt-table method as one means of regulating the roll stability properties of light trucks and utility vehicles. One consideration in evaluating the suitability of any test method for regulatory use is repeatability, both within and among testing facilities. As a first step toward evaluating the repeatability of the tilt-table method, an experimental study examining the sensitivity of tilt-table test results to variables associated with methodology and facility was conducted by UMTRI for the Motor Vehicle Manufacturers Association. This paper reports some of the findings of that study.
Technical Paper

Roll-Stability Performance of Heavy-Vehicle Suspensions

1992-11-01
922426
The handling-performance capability of most large commercial vehicles operating on US highways is generally established by the limits of roll stability. Especially for heavy trucks, suspension properties play an important role in establishing the basic roll stability of the vehicle. For all highway vehicles, the limit of static roll stability is established first by the ratio of half-track width to center-of-gravity height, and then by the compliant responses of the vehicle, which lead to outward motion of the center of gravity in a turn. Three suspension properties, roll stiffness, roll-center height, and lateral stiffness, influence this motion significantly. This paper discusses the basic mechanisms of static roll stability and highlights the role of suspension properties in establishing the roll-stability limit. Facilities and procedures for measuring key suspension properties are described, and data from the measurement of ninty-four heavy-vehicle suspensions are presented.
Technical Paper

Variability in Center of Gravity Height Measurement

1992-02-01
920050
A round-robin center of gravity height measurement study was conducted to assess current practice in the measurement of the vertical position of the center of gravity (c.g.) of light truck-type vehicles. The study was performed by UMTRI for the Motor Vehicle Manufacturers Association. The laboratories participating in the study were those of Chrysler Corporation, Ford Motor Company, General Motors Corporation, and the National Highway Traffic Safety Administration. The primary objectives of this study were (i) to determine to what extent the differing experimental procedures used by the participating laboratories at the time of the study result in significant differences in the measured vertical position of the center of mass of light truck-type vehicles, and (ii) to gain insight into the physical causes of such differences.
Technical Paper

Seated Posture of Vehicle Occupants

1983-10-17
831617
This paper describes the methodology and results from a project involving development of anthropometrically based design specifications for a family of advanced adult anthropomorphic dummies. Selection of family members and anthropometric criteria for subject sample selection were based on expected applications of the devices and on an analysis of U.S. population survey data. This resulted in collection of data for dummy sizes including a small female, a mid-sized male, and a large male. The three phases of data collection included: 1. in-vehicle measurements to determine seat track position and seating posture preferred by the subjects for use in development of laboratory seat bucks; 2. measurement of subject/seat interface contours for fabrication of an average hard seat surface for use in the buck; and 3. measurement of standard anthropometry, seated anthropometry (in the buck), and three-dimensional surface landmark coordinates using standard and photogrammetric techniques.
X