Refine Your Search


Search Results

Technical Paper

Development, Evaluation, and Sensitivity Analysis of Parametric Finite Element Whole-Body Human Models in Side Impacts

Occupant stature and body shape may have significant effects on injury risks in motor vehicle crashes, but the current finite element (FE) human body models (HBMs) only represent occupants with a few sizes and shapes. Our recent studies have demonstrated that, by using a mesh morphing method, parametric FE HBMs can be rapidly developed for representing a diverse population. However, the biofidelity of those models across a wide range of human attributes has not been established. Therefore, the objectives of this study are 1) to evaluate the accuracy of HBMs considering subject-specific geometry information, and 2) to apply the parametric HBMs in a sensitivity analysis for identifying the specific parameters affecting body responses in side impact conditions. Four side-impact tests with two male post-mortem human subjects (PMHSs) were selected to evaluate the accuracy of the geometry and impact responses of the morphed HBMs.
Technical Paper

PMHS Impact Response in 3 m/s and 8 m/s Nearside Impacts with Abdomen Offset

Lateral impact tests were performed using seven male post-mortem human subjects (PMHS) to characterize the force-deflection response of contacted body regions, including the lower abdomen. All tests were performed using a dual-sled, side-impact test facility. A segmented impactor was mounted on a sled that was pneumatically accelerated into a second, initially stationary sled on which a subject was seated facing perpendicular to the direction of impact. Positions of impactor segments were adjusted for each subject so that forces applied to different anatomic regions, including thorax, abdomen, greater trochanter, iliac wing, and thigh, could be independently measured on each PMHS. The impactor contact surfaces were located in the same vertical plane, except that the abdomen plate was offset 5.1 cm towards the subject.
Technical Paper

A Multi-Modality Image Data Collection Protocol for Full Body Finite Element Model Development

This study outlines a protocol for image data collection acquired from human volunteers. The data set will serve as the foundation of a consolidated effort to develop the next generation full-body Finite Element Analysis (FEA) models for injury prediction and prevention. The geometry of these models will be based off the anatomy of four individuals meeting extensive prescreening requirements and representing the 5th and 50th percentile female, and the 50th and 95th percentile male. Target values for anthropometry are determined by literature sources. Because of the relative strengths of various modalities commonly in use today in the clinical and engineering worlds, a multi-modality approach is outlined. This approach involves the use of Computed Tomography (CT), upright and closed-bore Magnetic Resonance Imaging (MRI), and external anthropometric measurements.
Technical Paper

Standing Reach Envelopes Incorporating Anthropometric Variance and Postural Cost

Standing reach envelopes are important tools for the design of industrial and vehicle environments. Previous work in this area has focussed on manikin-based (where a few manikins are used to simulate individuals reaching within the region of interest) and population-based (where data are gathered on many individuals reaching in a constrained environment) approaches. Each of these methods has merits and shortfalls. The current work bridges the manikin- and population-based approaches to assessing reach by creating population models using kinematic simulation techniques driven by anthropometric data. The approach takes into account body dimensions, balance, and postural cost to create continuous models that can be used to assess designs with respect to both maximal and submaximal reaches. Cost is quantified as the degree to which the torso is involved in the reach, since the inclination of the torso is a good measure of lower-back load and may be related to subjective reach difficulty.
Technical Paper

Field Operational Tests - Evaluating Driver-Assistance Systems Under Real World Conditions

This paper reviews the field operational test (FOT) methodology adopted in recent years for the evaluation of driver-assistance systems. The Road Departure Crash Warning System program is used both for illustration and as a case study. This project involved an extensive field operational test of a driver-assistance system using volunteers from the general public who drove instrumented research vehicles in place of their normal cars. Objective and subjective data were collected in these trials, and comparisons were made between driving behavior under conditions where the systems were either enabled or disabled. This paper presents sample results from the analyses and draws conclusions on the strengths and weaknesses of the FOT method.
Technical Paper

Parking Crashes and Parking Assistance System Design: Evidence from Crash Databases, the Literature, and Insurance Agent Interviews

This paper (1) summarizes previous human factors/safety research on parking (8 studies, mostly over 20 years old), (2) provides statistics for 10,400 parking-related crashes in Michigan from 2000-2002, and (3) summarizes interviews with 6 insurance agents concerning parking crashes. These sources indicate: 1 About 1/2 to 3/4 of parking crashes involve backing, often into another moving vehicle while emerging from a parking stall. 2 Eight-and-a-half foot-wide stalls had higher crash rates than wider stalls. 3 Most parallel parking crashes occur on major streets, not minor streets. 4 Lighting and driver impairment were minor factors in parking crashes.
Technical Paper

A Method for Documenting Locations of Rib Fractures for Occupants in Real-World Crashes Using Medical Computed Tomography (CT) Scans

A method has been developed to identify and document the locations of rib fractures from two-dimensional CT images obtained from occupants of crashes investigated in the Crash Injury Research Engineering Network (CIREN). The location of each rib fracture includes the vertical location by rib number (1 through 12), the lateral location by side of the thorax (inboard and outboard), and the circumferential location by five 36-degree segments relative to the sternum and spine. The latter include anterior, anterior-lateral, lateral, posterior-lateral, and posterior regions. 3D reconstructed images of the whole ribcage created from the 2D CT images using Voxar software are used to help identify fractures and their rib number. A geometric method for consistently locating each fracture circumferentially is described.
Technical Paper

Analysis of Truck-Light Vehicle Crash Data for Truck Aggressivity Reduction

The National Highway Traffic Safety Administration and the University of Michigan Transportation Institute are investigating truck design countermeasures to provide safety benefits during collisions with light vehicles. The goal is to identify approaches that would best balance costs and benefits. This paper outlines the first phase of this study, an analysis of two-vehicle, truck/light vehicle crashes from 1996 through 1998 using several crash data bases to obtain a current description and determine the scope of the aggressivity problem. Truck fronts account for 60% of light vehicle fatalities in collisions with trucks. Collision with the front of a truck carries the highest probability of fatal (K) or incapacitating (A) injury. Truck sides account for about the same number of K and A-injuries combined as truck fronts, though injury probability is substantially lower than in crashes involving the front of a truck.
Technical Paper

Modeling Population Distributions of Subjective Ratings

Most human figure models used in ergonomic analyses present postural comfort ratings based on joint angles, and present a single comfort score for the whole body or on a joint-by-joint basis. The source data for these ratings is generally derived from laboratory studies that link posture to ratings. Lacking in many of these models is a thorough treatment of the distribution of ratings for the population of users. Information about ratings distributions is necessary to make cost-effective tradeoffs when design changes affect subjective responses. This paper presents experimental and analytic methods used to develop distribution models for incorporating subjective rating data in ergonomic assessments.
Technical Paper

Comparison of Methods for Predicting Automobile Driver Posture

Recent research in the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program has led to the development of a new method for automobile driver posture prediction, known as the Cascade Model. The Cascade Model uses a sequential series of regression functions and inverse kinematics to predict automobile occupant posture. This paper presents an alternative method for driver posture prediction using data-guided kinematic optimization. The within-subject conditional distributions of joint angles are used to infer the internal cost functions that guide tradeoffs between joints in adapting to different vehicle configurations. The predictions from the two models are compared to in-vehicle driving postures.
Technical Paper

Emulating the Behavior of Truck Drivers in the Longitudinal Control of Headway

This paper describes control system and psychological concepts enabling the development of a simulation model suitable for use in emulating driver performance in situations involving the longitudinal control of the distance and headway-time to a preceding vehicle. The developed model has mathematical expressions and relationships pertaining to the driver's skill in operating the brake and accelerator (“inverse dynamics”) and the driver's perceptual and decision-making capabilities (“desired dynamics”). Simulation results for driving situations involving braking and accelerating are presented to aid in understanding the research work.
Technical Paper

Investigating Driver Headroom Perception: Methods and Models

Recent changes in impact protection requirements have led to increased padding on vehicle interior surfaces. In the areas near the driver's head, thicker padding can reduce the available headspace and may degrade the driver's perception of headroom. A laboratory study of driver headroom perception was conducted to investigate the effects of physical headroom on the subjective evaluation of headroom. Ninety-nine men and women rated a range of headroom conditions in a reconfigurable vehicle mockup. Unexpectedly, driver stature was not closely related to the perception of headroom. Short-statured drivers were as likely as tall drivers to rate a low roof condition as unacceptable. Statistical models were developed from the data to predict the effects of changes in headroom on the percentage of drivers rating the head-room at a specified criterion level.
Technical Paper

ASPECT Manikin Applications and Measurements for Design, Audit, and Benchmarking

The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) manikin provides new capabilities for vehicle and seat measurement while maintaining continuity with previous practices. This paper describes how the manikin is used in the development of new designs, the audit verification of build, and in benchmarking competitive vehicles and seats. The measurement procedures are discussed in detail, along with the seat and package dimensions that are associated with the new tool.
Technical Paper

Design and Development of the ASPECT Manikin

The primary objective of the ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program was to develop a new generation of the SAE J826 H-point manikin. The new ASPECT manikin builds on the long-term success of the H-point manikin while adding new measurement capability and improved ease of use. The ASPECT manikin features an articulated torso linkage to measure lumbar support prominence; new contours based on human subject data; a new weighting scheme; lightweight, supplemental thigh, leg, and shoe segments; and a simpler, user-friendly installation procedure. This paper describes the new manikin in detail, including the rationale and motivation for the design features. The ASPECT manikin maintains continuity with the current SAE J826 H-point manikin in important areas while providing substantial new measurement capability.
Technical Paper

Automobile Occupant Posture Prediction for Use with Human Models

A new method of predicting automobile occupant posture is presented. The Cascade Prediction Model approach combines multiple independent predictions of key postural degrees of freedom with inverse kinematics guided by data-based heuristics. The new model, based on posture data collected in laboratory mockups and validated using data from actual vehicles, produces accurate posture predictions for a wide range of passenger car interior geometries. Inputs to the model include vehicle package dimensions, seat characteristics, and occupant anthropometry. The Cascade Prediction Model was developed to provide accurate posture prediction for use with any human CAD model, and is applicable to many vehicle design and safety assessment applications.
Technical Paper

New Concepts in Vehicle Interior Design Using ASPECT

The ASPECT (Automotive Seat and Package Evaluation and Comparison Tools) program developed a new physical manikin for seat measurement and new techniques for integrating the seat measurements into the vehicle design process. This paper presents an overview of new concepts in vehicle interior design that have resulted from the ASPECT program and other studies of vehicle occupant posture and position conducted at UMTRI. The new methods result from an integration of revised versions of the SAE seat position and eyellipse models with the new tools developed in ASPECT. Measures of seat and vehicle interior geometry are input to statistical posture and position prediction tools that can be applied to any specified user population or individual occupant anthropometry.
Technical Paper

Methods for Laboratory Investigation of Airbag-Induced Thermal Skin Burns

Two new techniques for investigating the thermal skin-burn potential of airbags are presented. A reduced-volume airbag test procedure has been developed to obtain airbag pressures that are representative of a dynamic ridedown event during a static deployment. Temperature and heat flux measurements made with this procedure can be used to predict airbag thermal burn potential. Measurements from the reduced-volume procedure are complemented by data obtained using two gas-jet simulators, called heatguns. Gas is vented in controlled bursts from a large, heated, pressurized tank of gas onto a target surface. Heat flux measurements on the target surface have been used to develop quantitative models of the relationships between gas jet characteristics and burn potential.
Technical Paper

Development of an Improved Driver Eye Position Model

SAE Recommended Practice J941 describes the eyellipse, a statistical representation of driver eye locations, that is used to facilitate design decisions regarding vehicle interiors, including the display locations, mirror placement, and headspace requirements. Eye-position data collected recently at University of Michigan Transportation Research Institute (UMTRI) suggest that the SAE J941 practice could be improved. SAE J941 currently uses the SgRP location, seat-track travel (L23), and design seatback angle (L40) as inputs to the eyellipse model. However, UMTRI data show that the characteristics of empirical eyellipses can be predicted more accurately using seat height, steering-wheel position, and seat-track rise. A series of UMTRI studies collected eye-location data from groups of 50 to 120 drivers with statures spanning over 97 percent of the U.S. population. Data were collected in thirty-three vehicles that represent a wide range of vehicle geometry.
Technical Paper

Facial, Periorbital and Ocular Injuries Related to Steering-Wheel Airbag Deployments

To determine the frequency of facial injuries from steering-wheel airbag deployments, 540 consecutive steering-wheel airbag deployments, investigated by the University of Michigan Transportation Research Institute (UMTRI) personnel, were reviewed. About 1 in 3 drivers sustain an injury to the face. Injuries to the area surrounding the eye (periorbital) or to the eyeball (ocular) rarely occur. The frequencies of facial or ocular injuries are the same for belted and unbelted drivers. Drivers of short stature had a higher frequency of facial injury. Females sustained ocular injuries more frequently than males. Untethered airbags were not overly involved in drivers with an ocular injury. No specific make or model car were overly represented in the ocular injury cases.
Technical Paper

Driver Perceptual Adaptation to Nonplanar Rearview Mirrors

This study examined perceptual adaptation to nonplanar (spherical convex and aspheric) rearview mirrors. Subjects made magnitude estimates of the distance to a car seen in a rearview mirror. Three different mirrors were used: plane, aspheric (with a large spherical section having a radius of 1400 mm), and simple convex (with a radius of 1000 mm). Previous research relevant to perceptual adaptation to nonplanar mirrors was reviewed. It was argued that, in spite of some cases of explicit interest in the process of learning to use nonplanar mirrors, previous research has not adequately addressed the possibility of perceptual adaptation. The present experiment involved three phases: (1) a pretest phase in which subjects made distance judgments but received no feedback, (2) a training phase in which they made judgments and did receive feedback, and (3) a posttest phase with the same procedure as the pretest phase.