Refine Your Search

Topic

Search Results

Journal Article

Evaluation of Trajectory Based Combustion Control for Electrical Free Piston Engine

2020-04-14
2020-01-1149
Previously, the authors have proposed a novel strategy called trajectory based combustion control for the free piston engine (FPE) where the shape of the piston trajectory between top and bottom dead centers is used as a control input to modulate the chemical kinetics of the fuel-air mixture inside the combustion chamber. It has been shown that in case of a hydraulic free piston engine (HFPE), using active motion control, the piston inside the combustion chamber can be forced to track any desired trajectory, despite the absence of a crankshaft, providing reliable starting and stable operation. This allows the use of optimized piston trajectory for every operating point which minimizes fuel consumption and emissions. In this work, this concept is extended to an electrical free piston engine (EFPE) as a modular power source.
Technical Paper

Demonstration of Single-Fuel Reactivity Controlled Compression Ignition Using Reformed Exhaust Gas Recirculation

2018-04-03
2018-01-0262
A key challenge for the practical introduction of dual-fuel reactivity controlled compression ignition (RCCI) combustion modes in diesel engines is the requirement to store two fuels on-board. This work demonstrates that partially reforming diesel fuel into less reactive products is a promising method to allow RCCI to be implemented with a single stored fuel. Experiments were conducted using a thermally integrated reforming reactor in a reformed exhaust gas recirculation (R-EGR) configuration to achieve RCCI combustion using a light-duty diesel engine. The engine was operated at a low engine load and two reformed fuel percentages over ranges of exhaust gas recirculation (EGR) rate and main diesel fuel injection timing. Results show that RCCI-like emissions of NOx and soot were achieved load using the R-EGR configuration. It was also shown that complete fuel conversion in the reforming reactor is not necessary to achieve sufficiently low fuel reactivity for RCCI combustion.
Technical Paper

Comparison and Optimization of Fourier Transform Infrared Spectroscopy and Gas Chromatography-Mass Spectroscopy for Speciating Unburned Hydrocarbons from Diesel Low Temperature Combustion

2017-03-28
2017-01-0992
Partially premixed low temperature combustion (LTC) in diesel engines is a strategy for reducing soot and NOX formation, though it is accompanied by higher unburned hydrocarbon (UHC) emissions compared to conventional mixing-controlled diesel combustion. In this work, two independent methods of quantifying light UHC species from a diesel engine operating in early LTC (ELTC) modes were compared: Fourier transform infrared (FT-IR) spectroscopy and gas chromatography-mass spectroscopy (GC-MS). A sampling system was designed to capture and transfer exhaust samples for off-line GC-MS analysis, while the FT-IR sampled and quantified engine exhaust in real time. Three different ELTC modes with varying levels of exhaust gas recirculation (EGR) were implemented on a modern light-duty diesel engine. GC-MS and FT-IR concentrations were within 10 % for C2H2, C2H4, C2H6, and C2H4O. While C3H8 was identified and quantified by the FT-IR, it was not detected by the GCMS.
Technical Paper

Exploration of Dual Fuel Diesel Engine Operation with On-Board Fuel Reforming

2017-03-28
2017-01-0757
Many dual fuel technologies have been proposed for diesel engines. Implementing dual fuel modes can lead to emissions reductions or increased efficiency through using partially premixed combustion and fuel reactivity control. All dual fuel systems have the practical disadvantage that a secondary fuel storage and delivery system must be included. Reforming the primary diesel to a less reactive vaporized fuel on-board has potential to overcome this key disadvantage. Most previous research regarding on-board fuel reforming has been focused on producing significant quantities of hydrogen. However, only partially reforming the primary fuel is sufficient to vaporize and create a less volatile fuel that can be fumigated into an engine intake. At lower conversion efficiency and higher equivalence ratio, reforming reactors retain higher percentage of the inlet fuel’s heating value thus allowing for greater overall engine system efficiency.
Technical Paper

Effects of Variable Piston Trajectory on Indicated Efficiency Using a Quasi-Dimensional Spark-Ignition Model and Genetic Algorithm Optimization

2016-04-05
2016-01-0546
The impact of compression ratio on engine efficiency is well known. A plethora of mechanical concepts have been proposed for altering engine compression ratio in real time. Some of these, like free-piston configurations or complex crank-slider mechanisms have the added ability to alter piston trajectory along with compression ratio. This secondary modality raises the question: Is there a more optimal piston position versus crank-angle profile for spark-ignition (SI) engines than the near-sinusoidal motion produced by a traditional four-bar crank-slider mechanism? Very little published literature directly addresses this question. This work presents the results of a quasi-dimensional SI engine model using piston trajectory as an input. Specific trajectory traits including increased dwell at top dead center and asymmetric compression and expansion strokes were swept. The trajectory also was optimized using a single objective genetic algorithm with 60 individuals and 40 generations.
Journal Article

Measuring Diesel Ash Emissions and Estimating Lube Oil Consumption Using a High Temperature Oxidation Method

2009-06-15
2009-01-1843
Diesel engine ash emissions are composed of the non-combustible portions of diesel particulate matter derived mainly from lube oil, and over time can degrade diesel particulate filter performance. This paper presents results from a high temperature oxidation method (HTOM) used to estimate ash emissions, and engine oil consumption in real-time. Atomized lubrication oil and diesel engine exhaust were used to evaluate the HTOM performance. Atomized fresh and used lube oil experiments showed that the HTOM reached stable particle size distributions and concentrations at temperatures above 700°C. The HTOM produced very similar number and volume weighted particle size distributions for both types of lube oils. The particle number size distribution was unimodal, with a geometric mean diameter of about 23 nm. The volume size distribution had a geometric volume mean diameter of about 65 nm.
Technical Paper

Trade Study of an Exploration Cooling Garment

2008-06-29
2008-01-1994
A trade study was conducted with a goal to develop relatively high TRL design concepts for an Exploration Cooling Garment (ExCG) that can accommodate larger metabolic loads and maintain physiological limits of the crewmembers health and work efficiency during all phases of exploration missions without hindering mobility. Effective personal cooling through use of an ExCG is critical in achieving safe and efficient missions. Crew thermoregulation not only impacts comfort during suited operations but also directly affects human performance. Since the ExCG is intimately worn and interfaces with comfort items, it is also critical to overall crewmember physical comfort. Both thermal and physical comfort are essential for the long term, continuous wear expected of the ExCG.
Journal Article

Late Intake Valve Closing as an Emissions Control Strategy at Tier 2 Bin 5 Engine-Out NOx Level

2008-04-14
2008-01-0637
A fully flexible valve actuation (FFVA) system was developed for a single cylinder research engine to investigate high efficiency clean combustion (HECC) in a diesel engine. The main objectives of the study were to examine the emissions, performance, and combustion characteristics of the engine using late intake valve closing (LIVC) to determine the benefits and limitations of this strategy to meet Tier 2 Bin 5 NOx requirements without after-treatment. The most significant benefit of LIVC is a reduction in particulates due to the longer ignition delay time and a subsequent reduction in local fuel rich combustion zones. More than a 95% reduction in particulates was observed at some operating conditions. Combustion noise was also reduced at low and medium loads due to slower heat release. Although it is difficult to assess the fuel economy benefits of LIVC using a single cylinder engine, LIVC shows the potential to improve the fuel economy through several approaches.
Technical Paper

Comparing Measurements of Carbon in Diesel Exhaust Aerosols Using the Aethalometer, NIOSH Method 5040, and SMPS

2007-04-16
2007-01-0334
Combustion aerosols consist mainly of elemental and organic carbon (EC and OC). Since EC strongly absorbs light and thus affects atmospheric visibility and radiation balance, there is great interest in its measurement. To this end, the National Institute for Occupational Safety and Health (NIOSH) published a standard method to determine the mass of EC and OC on filter samples. Another common method of measuring carbon in aerosols is the aethalometer, which uses light extinction to measure “black carbon” or BC, which is considered to approximate EC. A third method sometimes used for estimating carbon in submicron combustion aerosols, is to measure particle size distributions using a scanning mobility particle sizer (SMPS) and calculate mass using the assumptions that the particles are spherical, carbonaceous and of known density.
Technical Paper

Significance of Fuel Sulfur Content and Dilution Conditions on Particle Emissions from a Heavily-Used Diesel Engine During Transient Operation

2007-04-16
2007-01-0319
The effects of fuel sulfur content and dilution conditions on diesel engine PM number emissions have been researched extensively through steady state testing. Most results show that the concentration of nuclei-mode particles emitted increases with fuel sulfur content. A few studies further observed that fuel sulfur content has little effect on the emissions of heavily-used engines. It has also been found that primary dilution conditions can have a large impact on the size and number distribution of the nuclei-mode particles. These effects, however, have not yet been fully understood through transient testing, the method used by governments worldwide to certify engines and regulate emissions, and a means of experimentation which generates realistic conditions of on-road vehicles by varying the load and speed of the engine.
Technical Paper

Improvement of Intake Restrictor Performance for a Formula SAE Race Car through 1D & Coupled 1D/3D Analysis Methods

2006-12-05
2006-01-3654
A typical means of limiting the peak power output of race car engines is to restrict the maximum mass flow of air to the engine. The Formula SAE sanctioning body requires the use of an intake restrictor to limit performance, keep costs low, and maintain a safe racing experience. The intake restrictor poses a challenge to improving engine performance. Methods to better understand the ramifications of the restrictor on the engine lead to performance improvements that allow an edge over the competition. A one-dimensional gas exchange simulation code coupled with three-dimensional CFD is used to simulate various concepts in the improvement of restrictor performance. Ricardo's WAVE and VECTIS are the respective simulation codes. Along with this, the interaction of intake manifold and restrictor are considered. The effects of different diffuser geometries and plenum dimensions were first explored using WAVE, and then a series of different diffuser angles were simulated using WAVE-VECTIS.
Technical Paper

The Influence of Engine Lubricating Oil on Diesel Nanoparticle Emissions and Kinetics of Oxidation

2003-10-27
2003-01-3179
Earlier work [1] shows that kinetics of Diesel soot oxidation is different from that of ethylene diffusion flame soot oxidation [2], possibly due to metals from lube oil. This study investigates the influence of metals on soot oxidation and the exhaust particle emissions using lube oil dosed fuel (2 % by volume). This method does not simulate normal lube oil consumption, but is used as a means of adding metals to particles for oxidation studies. This study also provides insight into the effect of systems that mix lube oil with fuel to minimize oil change service. The HTO-TDMA (High Temperature Oxidation-Tandem Differential Mobility Analyzer) technique [1] was used to measure the surface specific oxidation rate of Diesel particles over the temperature range 500-750 °C. Diesel particles sampled from the exhaust stream of a Diesel engine were size segregated by differential mobility and oxidized in situ in air in a heated flow tube of known residence time and temperature profile.
Technical Paper

Nanoparticle Growth During Dilution and Cooling of Diesel Exhaust: Experimental Investigation and Theoretical Assessment

2000-03-06
2000-01-0515
Nanoparticle formation during exhaust sampling and dilution has been examined using a two-stage micro-dilution system to sample the exhaust from a modern, medium-duty diesel engine. Growth rates of nanoparticles at different exhaust dilution ratios and temperatures have been determined by monitoring the evolution of particle size distributions in the first stage of the dilution system. Two methods, graphical and analytical, are described to determine particle growth rate. Extrapolation of size distribution down to 1 nm in diameter has been demonstrated using the graphical method. The average growth rate of nanoparticles is calculated using the analytical method. The growth rate ranges from 6 nm/sec to 24 nm/sec, except at a dilution ratio of 40 and primary dilution temperature of 48 °C where the growth rate drops to 2 nm /sec. This condition seems to represent a threshold for growth. Observed nucleation and growth patterns are consistent with predictions of a simple physical model.
Technical Paper

The Influence of Dilution Conditions on Diesel Exhaust Particle Size Distribution Measurements

1999-03-01
1999-01-1142
Particle size distribution and number concentration measurements have been made in the diluted exhaust of a medium-duty, turbocharged, aftercooled, direct-injection Diesel engine using a unique variable residence time micro-dilution system that allows systematic variation of dilution and sampling conditions, and a scanning mobility particle sizer (SMPS). The measurements show that the number concentrations in the nanoparticle (Dp < 50 nm) and the ultrafine (Dp < 100 nm) ranges are very sensitive to dilution conditions and fuel sulfur content. Changes in concentration of up to two orders of magnitude have been observed when conditions are varied over the range that might be encountered in typical laboratory dilution systems. For example, at a dilution ratio of 12, dilution temperature of 32 °C, and a residence time of 1000 ms, the number concentrations reach 6 × 108 part.
Technical Paper

Diesel Trap Performance: Particle Size Measurements and Trends

1998-10-19
982599
Particle concentrations and size distributions were measured in the exhaust of a turbocharged, aftercooled, direct-injection, Diesel engine equipped with a ceramic filter (trap). Measurements were performed both upstream and downstream of the filter using a two-stage, variable residence time, micro-dilution system, a condensation particle counter and a scanning mobility particle sizer set up to count and size particles in the 7-320 nm diameter range. Engine operating conditions of the ISO 11 Mode test were used. The engine out (upstream of filter) size distribution has a bimodal, log normal structure, consisting of a nuclei mode with a geometric number mean diameter, DGN, in the 10-30 nm range and an accumulation mode with DGN in the 50-80 nm range. The modal structure of the size distribution is less distinct downstream of the filter. Nearly all the particle number emissions come from the nuclei mode, are nanoparticles (Dp < 50nm), and are volatile.
Technical Paper

Diesel Exhaust Particle Size: Measurement Issues and Trends

1998-02-23
980525
Exhaust particle number concentrations and size distributions were measured from the exhaust of a 1995 direct injection, Diesel engine. Number concentrations ranged from 1 to 7.5×107 particles/cm3. The number size distributions were bimodal and log-normal in form with a nuclei mode in the 7-15 nm diameter range and an accumulation mode in the 30-40 nm range. For nearly all operating conditions, more than 50% of the particle number, but less than 1% of the particle mass were found in the nuclei mode. Preliminary indications are that the nuclei mode particles are solid and formed from volatilization and subsequent nucleation of metallic ash from lubricating oil additives. Modern low emission engines produce low concentrations of soot agglomerates. The absence of these agglomerates to act as sites for adsorption or condensation of volatile materials makes nucleation and high number emissions more likely.
Technical Paper

Influence of an Iron Fuel Additive on Diesel Combustion

1998-02-23
980536
This program used a 0.6 liter DI NA single cylinder diesel engine to study the influence of ferrocene as a fuel additive on particulate and NOx emissions and heat release rates. Previous Studies1,15 have shown efficiency and particulate emission benefits only after engine conditioning. Two engine configurations were tested: standard aluminum piston with normal engine deposits and a second test with the engine cleaned to “new engine condition”, but with the piston replaced with a thermal barrier coated piston. Particle concentration and size in roughly the 7.5 to 750 nm diameter range were measured with a condensation nucleus counter and an electrical aerosol analyzer. Heat release rates and IMEPs were calculated from in-cylinder pressure data. Particle number concentrations increased substantially when the 250 ppm dose was first started with both engine configuration, but decreased 30% to 50% with conditioning.
Technical Paper

Spark Ignition Engine Knock Detection Using In-Cylinder Optical Probes

1996-10-01
962103
Two types of in-cylinder optical probes were applied to a single cylinder CFR engine to detect knocking combustion. The first probe was integrated directly into the engine spark plug to monitor the radiation from burned gas in the combustion process. The second was built into a steel body and installed near the end gas region of the combustion chamber. It measured the radiant emission from the end gas in which knock originates. The measurements were centered in the near infrared region because thermal radiation from the combustion products was believed to be the main source of radiation from a spark ignition engine. As a result, ordinary photo detectors can be applied to the system to reduce its cost and complexity. It was found that the measured luminous intensity was strongly dependent upon the location of the optical sensor.
Technical Paper

Transient Particulate Emissions from Diesel Buses During the Central Business District Cycle

1996-02-01
960251
Particulate emissions from heavy-duty buses were measured in real time under conditions encountered during the standard Central Business District (CBD) driving cycle. The buses tested were equipped with 1994 Detroit Diesel Engine Corporation 6V92-TA engines, and some included after treatment devices on the exhaust. Instantaneous, time-resolved measurements of CO2 and amorphous carbon concentrations were obtained using an optical extinction technique and compared to simultaneous results obtained using conventional dilution tunnel sampling methods. Good agreement was obtained between the real-time extinction measurements and the diluted CO2 and cycle-integrated filter measurements. The instantaneous measurements revealed that acceleration transients accounted for roughly 80% of the particulate mass emitted during the cycle but only about 45% of the fuel consumption.
Technical Paper

Geometric optimization of Nozzles for Inclined Injectors for DI Diesel Engines

1996-02-01
960868
Low emission heavy-duty diesel engines are increasingly utilizing four-valve designs with vertical central injectors. However, two-valve DI diesel engines with inclined injectors offset from the centerline of the piston bowl are likely to continue to be used in medium and light duty applications for some time. In such situations, designing of the hole-type nozzle is very difficult and may cause unavoidable back-drilling problems. The purpose of this paper is to solve back-drilling problems connected with hole-type nozzles and improve fuel-air mixing which leads to more efficient combustion. Based on geometric considerations, this paper introduces single-cone hole-type nozzles, double-cone hole-type nozzles, and the critical principal angles for hole-type nozzles. The single-cone hole-type nozzles and double-cone hole-type nozzles can meet requirements for height of the spray impingement points and spray orifice distribution angle at the same time.
X