Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Multi-Output Control of a Heavy Duty HCCI Engine Using Variable Valve Actuation and Model Predictive Control

2006-04-03
2006-01-0873
Autoignition of a homogeneous mixture is very sensitive to operating conditions, therefore fast control is necessary for reliable operation. There exists several means to control the combustion phasing of an Homogeneous Charge Compression Ignition (HCCI) engine, but most of the presented controlled HCCI result has been performed with single-input single-output controllers. In order to fully operate an HCCI engine several output variables need to be controlled simultaneously, for example, load, combustion phasing, cylinder pressure and emissions. As these output variables have an effect on each other, the controller should be of a structure which includes the cross-couplings between the output variables. A Model Predictive Control (MPC) controller is proposed as a solution to the problem of load-torque control with simultaneous minimization of the fuel consumption and emissions, while satisfying the constraints on cylinder pressure.
Technical Paper

Variable Valve Actuation for Timing Control of a Homogeneous Charge Compression Ignition Engine

2005-04-11
2005-01-0147
Autoignition of a homogeneous mixture is very sensitive to operating conditions. Therefore fast combustion phasing control is necessary for reliable operation. There are several means to control the combustion phasing of a Homogeneous Charge Compression Ignition (HCCI) engine. This paper presents cycle-to-cycle cylinder individual control results from a six-cylinder HCCI engine using a Variable Valve Actuation (VVA) system. As feedback signal, the crank angle for 50% burned, based on cylinder pressure, is used. Three control structures are evaluated, Model Predictive Control (MPC), Linear Quadratic Gaussian control (LQG) and PID control. In the control design of the MPC and LQG controller, dynamic models obtained by system identification were used. Successful experiments were performed on a port-injected six-cylinder heavy-duty Diesel engine operating in HCCI mode.
Technical Paper

Cycle-to-Cycle Control of a Dual-Fuel HCCI Engine

2004-03-08
2004-01-0941
A known problem of the HCCI engine is its lack of direct control and its requirements of feedback control. Today there exists several different means to control an HCCI engine, such as dual fuels, variable valve actuation, inlet temperature and compression ratio. Independent of actuation method a sensor is needed. In this paper we perform closed-loop control based on two different sensors, pressure and ion current sensor. Results showing that they give similar control performance within their operating range are presented. Also a comparison of two methods of designing HCCI timing controller, manual tuning and model based design is presented. A PID controller is used as an example of a manually tuned controller. A Linear Quadratic Gaussian controller exemplifies model based controller design. The models used in the design were estimated using system identification methods. The system used in this paper performs control on cycle-to-cycle basis. This leads to fast and robust control.
X