Refine Your Search

Search Results

Viewing 1 to 8 of 8
Technical Paper

Material Properties for Modeling Traumatic Aortic Rupture

2001-11-01
2001-22-0006
Traumatic aortic rupture is a significant cause of fatalities in frontal automobile crashes. However, such ruptures are difficult to reproduce experimentally in cadaveric surrogates, and it is difficult to observe dynamic aortic response in situ. So, the aortic injury mechanism or mechanisms remains in dispute. This study is a staged investigation of the physical parameters and mechanisms of human aortic rupture. The investigation includes both experimental study of local and global viscoelastic properties and failure properties of aortas using aortic tissue samples, excised aortas in vitro, and whole human aortas in situ in cadaver thoraxes. This study is the first phase in a staged programme to develop a finite element computer model of aorta injury to examine the mechanisms of aorta injury in automobile crashes.
Technical Paper

The Influence of Superficial Soft Tissues and Restraint Condition on Thoracic Skeletal Injury Prediction

2001-11-01
2001-22-0008
The purpose of this study is to evaluate the hard tissue injury -predictive value of various thoracic injury criteria when the restraint conditions are varied. Ten right-front passenger human cadaver sled tests are presented, all of which were performed at 48 km/h with nominally identical sled deceleration pulses. Restraint conditions evaluated are 1) force-limiting belt and depowered airbag (4 tests), 2) non-depowered airbag with no torso belt (3 tests), and 3) standard belt and depowered airbag (3 tests). Externally measured chest compression is shown to correspond well with the pre sence of hard tissue injury, regardless of restraint condition, and rib fracture onset is found to occur at approximately 25% chest compression. Peak acceleration and the average spinal acceleration measured at the first and eighth or ninth thoracic vertebrae are shown to be unrelated to the presence of injury, though clear variations in peaks and time histories among restraint conditions can be seen.
Technical Paper

THE EFFECT OF ACTIVE MUSCLE TENSION ON THE AXIAL INJURY TOLERANCE OF THE HUMAN FOOT/ANKLE COMPLEX

2001-06-04
2001-06-0074
Axial loading of the foot/ankle complex is an important injury mechanism in vehicular trauma that is responsible for severe injuries such as calcaneal and tibia pilon fractures. Axial loading may be applied to the leg externally, by the toepan and/or pedals, as well as internally, by active muscle tension applied through the Achilles tendon during pre-impact bracing. In order to evaluate the effect of active muscle tension on the injury tolerance of the foot/ankle complex, blunt axial impact tests were performed on 44 isolated lower legs with and without experimentally simulated Achilles tension. The primary fracture mode was calcaneal fracture in both groups, but tibia pilon fractures occurred more frequently with the addition of Achilles tension. Acoustic emission demonstrated that fracture initiated at the time of peak local axial force.
Technical Paper

Evaluation of lower limb injury mitigation from inflatable carpet in sled tests with intrusion using the Thor Lx

2001-06-04
2001-06-0092
Real-world crash investigations have suggested that lower limb injury risk is increased with the occurrence of toepan intrusion in a frontal collision. In order to more closely evaluate the effects of different modes of toepan intrusion, a rotational and translational intrusion device was built for the test sled at the University of Virginia. Sled tests were performed at a velocity of 56 km/h with a belted Hybrid III occupant and a simulated knee bolster and steering wheel air bag. Lower limb injury risk measures were obtained with Hybrid III and Thor Lx dummy lower extremities. Dummy response variables of interest included tibia axial and shear loads, tibia bending moments, ankle rotations and foot and tibia accelerations. The tests were conducted with no intrusion and with a translational intrusion with a peak deceleration of approximately 175 g's with 14 cm of translation.
Technical Paper

Sled System Requirements for the Analysis of Side Impact Thoracic Injury Criteria and Occupant Protection

2001-03-05
2001-01-0721
This paper discusses struck-side occupant thoracic response to side-impact loading and the requirements of a sled system capable of reproducing the relevant motions of a laterally impacted vehicle. A simplified viscoelastic representation of a thorax is used to evaluate the effect of the door velocity-time profile on injury criteria and on the internal stress state of the thorax. Simulations using a prescribed door velocity-time profile (punch impact) are contrasted against simulations using a constant-velocity impact (Heidelberg-type impact). It is found that the stress distribution and magnitude within the thorax, in addition to the maximum thorax compression and viscous response, depend not only on the door-occupant closing velocity, but also on the shape of the door velocity-time profile throughout the time of contact with the occupant. A sled system capable of properly reproducing side-impact door and seat motion is described.
Technical Paper

Interaction of the Hand and Wrist with a Door Handgrip During Static Side Air Bag Deployment: Simulation Study Using the CVS/ATB Multi-Body Program

2001-03-05
2001-01-0170
This paper presents a parametric study that utilized the CVS/ATB multi-body simulation program to investigate the interaction of the hand and wrist with a door handgrip during side air bag loading. The goal was to quantify the relative severity of various hand and handgrip positions as a guide in the selection of a test matrix for laboratory testing. The air bag was represented as a multi-body system of ellipsoidal surfaces that were created to simulate a prototype seat-mounted thorax side air bag. All simulations were set in a similar static test environment as used in corresponding dummy and cadaver side air bag testing. The occupant mass and geometric properties were based on a 5th percentile female occupant in order to represent a high-risk segment of the adult population. The upper extremity model consisted of wrist and forearm rotations that were based on human volunteer data.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Sled Tests

1998-02-23
980359
A series of eight sled tests was conducted using Hybrid III dummies and cadavers in order to examine the influence of foot placement on the brake pedal in frontal collisions. The brake pedal in the sled runs was fixed in a fully depressed position and the occupants' muscles were not tensed. The cadaver limbs and the Hybrid III lower extremities with 45° ankle and soft joint-stop were extensively instrumented to determine response during the crash event. Brake pedal reaction forces were measured using a six-axis load cell and high speed film was used for kinematic analysis of the crashes. Four right foot positions were identified from previous simulation studies as those orientations most likely to induce injury. In each test, the left foot was positioned on a simulated footrest, acting as a control variable that produced repeatable results in all dummy tests. Each of the different right foot orientations resulted in different loads and motions of the right leg and foot.
Technical Paper

Lower Extremity and Brake Pedal Interaction in Frontal Collisions: Computer Simulation

1998-02-23
980364
An Articulated Total Body frontal crash simulation was created with the dummy's right foot placed on the brake pedal. This study examined how interaction of the driver's foot with the brake pedal influenced the behavior of the lower extremities in frontal collisions. Braking parameters considered in the study included foot position on the pedal, whether or not the occupant's muscles were tensed and if the brake pedal was rigid or was allowed to depress. Two basic foot positions were identified as most likely to induce injury of the lower limb. One represented a foot that was pivoted about the heel from the gas pedal to the brake pedal. The other position replicated a foot that was lifted from the gas pedal to the brake pedal, resulting in an initial gap between the heel and floor. Both positions resulted in different loads and behavior of the foot, indicating that driver pre-impact position is a contributing factor to one's injury risk.
X