Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Kinematic and Injury Response of Reclined PMHS in Frontal Impacts

2021-04-02
2020-22-0004
Frontal impacts with reclined occupants are rare but severe, and they are anticipated to become more common with the introduction of vehicles with automated driving capabilities. Computational and physical human surrogates are needed to design and evaluate injury countermeasures for reclined occupants, but the validity of such surrogates in a reclined posture is unknown. Experiments with post-mortem human subjects (PMHS) in a recline posture are needed both to define biofidelity targets for other surrogates and to describe the biomechanical response of reclined occupants in restrained frontal impacts. The goal of this study was to evaluate the kinematic and injury response of reclined PMHS in 30 g, 50 km/h frontal sled tests. Five midsize adult male PMHS were tested. A simplified semi-rigid seat with an anti-submarining pan and a non-production three-point seatbelt (pre-tensioned, force-limited, seat-integrated) were used.
Technical Paper

A Comparative Analysis of the Pedestrian Injury Risk Predicted by Mechanical Impactors and Post Mortem Human Surrogates

2008-11-03
2008-22-0020
The objective of this study is to compare the risk of injury to pedestrians involved in vehicle-pedestrian impacts as predicted by two different types of risk assessment tools: the pedestrian subsystem impactors recommended by the European Enhanced Vehicle-Safety Committee (EEVC) and post-mortem human surrogates (PMHS). Seven replicate full-scale vehicle-pedestrian impact tests were performed with PMHS and a mid-sized sedan travelling at 40 km/h. The PMHS were instrumented with six-degree-of-freedom sensor cubes and sensor data were transformed and translated to predict impact kinematics at the head center of gravity, proximal tibiae, and knee joints. Single EEVC WG 17/EuroNCAP adult headform, upper legform and lower legform impactor tests of the same vehicle were selected for comparison based on the proximity of their impact locations to that of the PMHS.
Technical Paper

Dynamic Response Corridors of the Human Thigh and Leg in Non-Midpoint Three-Point Bending

2005-04-11
2005-01-0305
Current standards and test devices for pedestrian safety are developed using results from impact tests where inertial considerations have dominated and the vehicle pedestrian loading environment has not been properly replicated. When controlled tests have been conducted to evaluate the biofidelity of anthropometric test devices, current designs have faired poorly. The objective of the current study was to develop dynamic force-deflection and moment-deflection response corridors for the 50th percentile adult male thigh and leg subjected to non-midpoint 3-point bending at rates characteristic of the vehicle-pedestrian loading environment. Six thigh and eight leg specimens were harvested from eight adult male human cadavers and ramped to failure in dynamic 3-point bending in the latero-medial direction.
Technical Paper

Experiments for Establishing Pedestrian-Impact Lower Limb Injury Criteria

2003-03-03
2003-01-0895
Previous lateral knee bending and shear tests have reported knee joint failure moments close to failure bending moments for the tibia and femur. Eight tibias, eight femurs and three knee joints were tested in lateral bending and two knee joints were tested in lateral shear. Seven previous studies on femur bending, five previous studies on tibia bending, two previous studies on knee joint bending, and one on shear were reviewed and compared with the current tests. All knee joint failures in the current study were either epiphysis fractures of the femur or soft tissue failures. The current study reports an average lateral failure bending moment for the knee joint (134 Nm SD 7) that is dramatically lower than that reported in the literature (284-351 Nm), that reported in the current study for the tibia (291 Nm SD 69) and for femur (382 Nm SD 103).
X