Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Design of a Test Geometry to Characterize Sheared Edge Fracture in a Uniaxial Bending Mode

2023-04-11
2023-01-0730
The characterization of sheet metals under in-plane uniaxial bending is challenging due to the aspect ratios involved that can cause buckling. Anti-buckling plates can be employed but require compensation for contact pressure and friction effects. Recently, a novel in-plane bending fixture was developed to allow for unconstrained sample rotation that does not require an anti-buckling device. The objective of the present study is to design the sample geometry for sheared edge fracture characterization under in-plane bending along with a methodology to resolve the strains exactly at the edge. A series of virtual experiments were conducted for a 1.0 mm thick model material with different hardening rates to identify the influence of gage section length, height, and the radius of the transition region on the bend ratio and potential for buckling. Two specimen geometries are proposed with one suited for constitutive characterization and the other for sheared edge fracture.
Journal Article

The Missing Link: Developing a Safety Case for Perception Components in Automated Driving

2022-03-29
2022-01-0818
Safety assurance is a central concern for the development and societal acceptance of automated driving (AD) systems. Perception is a key aspect of AD that relies heavily on Machine Learning (ML). Despite the known challenges with the safety assurance of ML-based components, proposals have recently emerged for unit-level safety cases addressing these components. Unfortunately, AD safety cases express safety requirements at the system level and these efforts are missing the critical linking argument needed to integrate safety requirements at the system level with component performance requirements at the unit level. In this paper, we propose the Integration Safety Case for Perception (ISCaP), a generic template for such a linking safety argument specifically tailored for perception components. The template takes a deductive and formal approach to define strong traceability between levels.
Technical Paper

A Personalized Deep Learning Approach for Trajectory Prediction of Connected Vehicles

2020-04-14
2020-01-0759
Forecasting the motion of the leading vehicle is a critical task for connected autonomous vehicles as it provides an efficient way to model the leading-following vehicle behavior and analyze the interactions. In this study, a personalized time-series modeling approach for leading vehicle trajectory prediction considering different driving styles is proposed. The method enables a precise, personalized trajectory prediction for leading vehicles with limited inter-vehicle communication signals, such as vehicle speed, acceleration, space headway, and time headway of the front vehicles. Based on the learning nature of human beings that a human always tries to solve problems based on grouping and similar experience, three different driving styles are first recognized based on an unsupervised clustering with a Gaussian Mixture Model (GMM).
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

2016-04-05
2016-01-1565
Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
Technical Paper

Fatigue Life Prediction of an Automotive Chassis System with Combined Hardening Material Model

2016-04-05
2016-01-0378
The choice of an appropriate material model with parameters derived from testing and proper modeling of stress-strain response during cyclic loading are the critical steps for accurate fatigue-life prediction of complex automotive subsystems. Most materials used in an automotive substructure, like a chassis system, exhibit combined hardening behavior and it is essential to capture this behavior in the CAE model in order to accurately predict the fatigue life. This study illustrates, with examples, the strain-controlled testing of material coupons, and the calculations of material parameters from test data for the combined hardening material model used in the Abaqus solver. Stress-strain response curves and fatigue results from other simpler material models like the isotropic hardening model and the linear material model with Neuber correction are also discussed in light of the respective fatigue theories.
Technical Paper

Effect of Stress Triaxiality on the Constitutive Response of Super Vacuum Die Cast AM60B Magnesium Alloy

2014-04-01
2014-01-1015
The effect of stress triaxiality on failure strain in as-cast magnesium alloy AM60B is examined. Experiments using one uniaxial and two notched tensile geometries were used to study the effect of stress triaxiality on the quasi-static constitutive response of super vacuum die cast AM60B castings. For all tests, local strains, failure location and specimen elongation were tracked using two-dimensional digital image correlation (DIC) analysis. The uniaxial specimens were tested in two orthogonal directions to determine the anisotropy of the casting. Finite element models were developed to estimate effective plastic strain histories and stress state (triaxiality) as a function of notch severity. It was found that there is minimal, if any, anisotropy present in AM60B castings. Higher stress triaxiality levels caused increases in maximum stress and decreases in elongation and local effective plastic strain at failure.
Journal Article

Impact Testing of a Hot-Formed B-Pillar with Tailored Properties - Experiments and Simulation

2013-04-08
2013-01-0608
This paper presents the numerical validation of the impact response of a hot formed B-pillar component with tailored properties. A laboratory-scale B-pillar tool is considered with integral heating and cooling sections in an effort to locally control the cooling rate of an austenitized blank, thereby producing a part with tailored microstructures to potentially improve the impact response of these components. An instrumented falling-weight drop tower was used to impact the lab-scale B-pillars in a modified 3-point bend configuration to assess the difference between a component in the fully hardened (martensitic) state and a component with a tailored region (consisting of bainite and ferrite). Numerical models were developed using LS-DYNA to simulate the forming and thermal history of the part to estimate the final thickness and strain distributions as well as the predicted microstructures.
Technical Paper

Humidity Sensing Based on Ordered Porous Silicon for the Application on Fuel Cell

2008-04-14
2008-01-0687
Porous silicon as gas/chemical sensing material has been widely investigated in recent years. In this paper, the humidity sensing property of n-type porous silicon with ordered structure is studied for the first time. The ordered porous silicon used in this experiment has uniform pore size, pore shape and distribution. Both the membrane and closed bottom samples were studied. The resistance change of the porous silicon was measured. A 22-28% decrease of resistance was observed when relative humidity was changed from 1% to 100%. Both the response time and the recovery time were within 10 minutes, and 90% of the response can be reached in 6 minutes for the PS membrane sample. The possible sensing mechanism and future work are also discussed in this paper.
Technical Paper

Monitoring the Effect of RSW Pulsing on AHSS using FEA (SORPAS) Software

2007-04-16
2007-01-1370
In this study, a finite element software application (SORPAS®) is used to simulate the effect of pulsing on the expected weld thermal cycle during resistance spot welding (RSW). The predicted local cooling rates are used in combination with experimental observation to study the effect pulsing has on the microstructure and mechanical properties of Zn-coated DP600 AHSS (1.2mm thick) spot welds. Experimental observation of the weld microstructure was obtained by metallographic procedures and mechanical properties were determined by tensile shear testing. Microstructural changes in the weld metal and heat affect zone (HAZ) were characterized with respect to process parameters.
Technical Paper

Dent Resistance of Medium Scale Aluminum Structural Assemblies

2001-03-05
2001-01-0757
This work outlines the evaluation of static and dynamic dent resistance of medium scale structural assemblies fabricated using AA6111 and AA5754. The assemblies fabricated attempt to mimic common automotive hood designs allowing for a parametric study of the support spacing, sheet thickness and panel curvature. Closure panels of AA6111, of two thicknesses (0.8, and 0.9mm), are bonded to re-usable inner panels fabricated using AA5754 to form the structural assemblies tested. While normal practice would use the same alloy for both the inner and the outer, in the current work, AA5754 was adopted for ease of welding. Numerical simulations were performed using LS DYNA. A comparison of experimental and numerically simulated results is presented. The study attempts to establish an understanding of the relationship between structural support conditions and resulting dent depths for both static and dynamic loading conditions.
Technical Paper

Numerical Prediction of the Autoignition Delay in a Diesel-Like Environment by the Conditional Moment Closure Model

2000-03-06
2000-01-0200
The autoignition delay of a turbulent methane jet in a Diesel-like environment is calculated by the conditional moment closure(CMC) model. Methane is injected into hot air in a constant volume chamber under various temperatures and pressures. Detailed chemical reaction mechanisms are implemented with turbulence-chemistry interaction treated by the first order CMC. The CMC model solves the conditional mean species mass fraction and temperature equations with the source term given in terms of the conditional mean quantities. The flow and mixing field are calculated by the transient SIMPLE algorithm with the k -ε model and the assumed beta function pdf. The CMC equations are solved by the fractional step method which sequentially treats the transport and chemical reaction terms in each time step. The predictions in quiescent homogeneous mixture are presented to evaluate the effects of turbulence in jet ignition.
Technical Paper

Modelling Diesel Engine Natural Gas Injection: Injector/Cylinder Boundary Conditions

1994-03-01
940329
Direct injected natural gas diesel engines are currently being developed. Numerical analyses results are presented for 20.0 MPa (≈ 3000 psia; 200 atm), 444 K, natural gas injection into 4.0 MPa cylinder air where the ambient turbulence field is representative of diesel engines. Two very important non-intuitive, observations are made. First, the seemingly reasonable spatially uniform velocity profile currently used at the injector exit is not appropriate, rather a double-hump profile is correct. Second, a spatially uniform, injector exit, temperature profile results in local temperature overestimates as large as 300 K. Considering the strong role of temperature on chemical kinetics, this second observation may have profound implications on the validity of conclusions reached using uniform exit profiles.
Technical Paper

Fatigue Life Prediction for Variable Amplitude Strain Histories

1993-03-01
930400
This paper presents a model for fatigue life prediction for metals subjected to variable amplitude service loading. The model, which is based on crack growth and crack closure mechanisms for short fatigue cracks, incorporates a strain-based damage parameter, EΔε*, determined from the effective or open part of a strain cycle along with a fatigue resistance curve that takes the form: EΔε* = A(Nf)b, where E is the elastic modulus, Nf is the number of cycles to failure, and A and b are experimentally determined material constants. The fatigue resistance curve is generated for a SAE 1045 steel and the model is used successfully to predict the fatigue lives of smooth axial specimens subjected to two variable amplitude strain histories. The model is also used to predict the magnitude of non-damaging cycles that can be omitted from the strain histories to accelerate fatigue testing.
Technical Paper

The Effect of Nitrogen on the Mechanical Properties of an SAE 1045 Steel

1992-02-01
920667
A cold worked and induction hardened SAE1045 steel component exhibited excessive distortion after cold working and straightening, as well as cracking during straightening after induction hardening. Since the problems occurred only in certain heats of electric furnace (EF) steel, in which nitrogen content can vary widely and in some cases be quite high, and never occurred for basic oxygen furnace (BOF) steel for which nitrogen contents are uniformly low it was suspected that the source of the problem was low temperature nitrogen strain aging in heats of EF steel with a high nitrogen content. The measured distortion and mechanical properties at various stages in the fabrication process showed that while nitrogen content had no significant effect on the hot rolled steel the component distortion and strength after cold working and after induction hardening increased with increasing nitrogen content.
Technical Paper

Fatigue Evaluation of a Nodular Cast Iron Component

1992-02-01
920669
A ferritic-pearlitic nodular iron automobile suspension knuckle was fatigue tested in the laboratory using a constant amplitude load level that simulated a severe service condition. It was found that cracks always initiated from surface casting defects and that the fatigue life could be extended significantly by machining away the as-cast surface in the fatigue sensitive locations. Both local strain and fracture mechanics approaches were used successfully to predict the fatigue life of the component.
Technical Paper

An Evaluation of the Fatigue Performance of Automotive Steels

1971-02-01
710597
A rapid inexpensive evaluation and comparison of the cyclic properties of three steels used in the automotive industry is presented. This evaluation ranges from the endurance limit through the transition life and low cycle regions to the monotonic results. Smooth and notched specimens, tested in strain control and load control, respectively, provide data that are used to indicate notch sensitivity and size effects, cyclic strength and ductility, and cyclic deformation response. The effect of overloads on fatigue damage is given and prestrained smooth specimens demonstrate the possible effect of a few large plastic strain cycles on fatigue resistance. Overloaded notched specimens indicate reductions in life due to both large plastic strain cycles and the induced tensile residual stress. These data are suitable for direct insertion into the design process and also provide a broad base for continuing studies of cyclic behavior.
X