Refine Your Search

Topic

Author

Search Results

Technical Paper

Online Identification of Vehicle Driving Conditions Using Machine-Learned Clusters

2023-10-31
2023-01-1607
Modern electrified vehicles rely on drivers to manually adjust control parameters to modify the vehicle's powertrain, such as regenerative braking strength selection or drive mode selection. However, this reliance on infrequent driver input may lead to a mismatch between the selected powertrain control modifiers and the true driving environment. It is therefore advantageous for an electric vehicle's powertrain controller to make online identifications of the current driving conditions. This paper proposes an online driving condition identification scheme that labels drive cycle intervals collected in real-time based on a clustering model, with the objective of informing adaptive powertrain control strategies. HDBSCAN and K-means clustering models are fitted to a data set of drive cycle intervals representing a full range of characteristic driving conditions.
Technical Paper

Notch Plasticity and Fatigue Modelling of AZ31B-H24 Magnesium Alloy Sheet

2019-04-02
2019-01-0530
Vehicle weight reduction through the use of components made of magnesium alloys is an effective way to reduce carbon dioxide emission and improve fuel economy. In the design of these components, which are mostly under cyclic loading, notches are inevitably present. In this study, surface strain distribution and crack initiation sites in the notch region of AZ31B-H24 magnesium alloy notched specimens under uniaxial load are measured via digital image correlation. Predicted strains from finite element analysis using Abaqus and LS-DYNA material types 124 and 233 are then compared against the experimental measurements during quasi-static and cyclic loading. It is concluded that MAT_233, when calibrated using cyclic tensile and compressive stress-strain curves, is capable of predicting strain at the notch root. Finally, employing Smith-Watson-Topper model together with MAT_233 results, fatigue lives of the notched specimens are estimated and compared with experimental results.
Technical Paper

Design Optimization of the Transmission System for Electric Vehicles Considering the Dynamic Efficiency of the Regenerative Brake

2018-04-03
2018-01-0819
In this paper, gear ratios of a two-speed transmission system are optimized for an electric passenger car. Quasi static system models, including the vehicle model, the motor, the battery, the transmission system, and drive cycles are established in MATLAB/Simulink at first. Specifically, since the regenerative braking capability of the motor is affected by the SoC of battery and motors torque limitation in real time, the dynamical variation of the regenerative brake efficiency is considered in this study. To obtain the optimal gear ratios, iterations are carried out through Nelder-Mead algorithm under constraints in MATLAB/Simulink. During the optimization process, the motor efficiency is observed along with the drive cycle, and the gear shift strategy is determined based on the vehicle velocity and acceleration demand. Simulation results show that the electric motor works in a relative high efficiency range during the whole drive cycle.
Journal Article

A Global Optimal Energy Management System for Hybrid Electric off-road Vehicles

2017-03-28
2017-01-0425
Energy management strategies greatly influence the power performance and fuel economy of series hybrid electric tracked bulldozers. In this paper, we present a procedure for the design of a power management strategy by defining a cost function, in this case, the minimization of the vehicle’s fuel consumption over a driving cycle. To explore the fuel-saving potential of a series hybrid electric tracked bulldozer, a dynamic programming (DP) algorithm is utilized to determine the optimal control actions for a series hybrid powertrain, and this can be the benchmark for the assessment of other control strategies. The results from comparing the DP strategy and the rule-based control strategy indicate that this procedure results in approximately a 7% improvement in fuel economy.
Journal Article

Cyber-Physical System Based Optimization Framework for Intelligent Powertrain Control

2017-03-28
2017-01-0426
The interactions between automatic controls, physics, and driver is an important step towards highly automated driving. This study investigates the dynamical interactions between human-selected driving modes, vehicle controller and physical plant parameters, to determine how to optimally adapt powertrain control to different human-like driving requirements. A cyber-physical system (CPS) based framework is proposed for co-design optimization of the physical plant parameters and controller variables for an electric powertrain, in view of vehicle’s dynamic performance, ride comfort, and energy efficiency under different driving modes. System structure, performance requirements and constraints, optimization goals and methodology are investigated. Intelligent powertrain control algorithms are synthesized for three driving modes, namely sport, eco, and normal modes, with appropriate protocol selections. The performance exploration methodology is presented.
Technical Paper

Extended Range Electric Vehicle Powertrain Simulation, and Comparison with Consideration of Fuel Cell and Metal-Air Battery

2017-03-28
2017-01-1258
The automobile industry has been undergoing a transition from fossil fuels to a low emission platform due to stricter environmental policies and energy security considerations. Electric vehicles, powered by lithium-ion batteries, have started to attain a noticeable market share recently due to their stable performance and maturity as a technology. However, electric vehicles continue to suffer from two disadvantages that have limited widespread adoption: charging time and energy density. To mitigate these challenges, vehicle Original Equipment Manufacturers (OEMs) have developed different vehicle architectures to extend the vehicle range. This work seeks to compare various powertrains, including: combined power battery electric vehicles (BEV) (zinc-air and lithium-ion battery), zero emission fuel cell vehicles (FCV)), conventional gasoline powered vehicles (baseline internal combustion vehicle), and ICE engine extended range hybrid electric vehicle.
Technical Paper

Control Analysis for Efficiency Optimization of a High Performance Hybrid Electric Vehicle with Both Pre and Post Transmission Motors

2016-04-05
2016-01-1253
The drive to improve and optimize hybrid vehicle performance is increasing with the growth of the market. With this market growth, the automotive industry has recognized a need to train and educate the next generation of engineers in hybrid vehicle design. The University of Waterloo Alternative Fuels Team (UWAFT), as part of the EcoCAR 3 competition, has developed a control strategy for a novel parallel-split hybrid architecture. This architecture features an engine, transmission and two electric motors; one pre-transmission motor and one post-transmission motor. The control strategy operates these powertrain components in a series, parallel, and all electric power flow, switching between these strategies to optimize the energy efficiency of the vehicle. Control strategies for these three power flows are compared through optimization of efficiencies within the powertrain.
Technical Paper

Investigations of Atkinson Cycle Converted from Conventional Otto Cycle Gasoline Engine

2016-04-05
2016-01-0680
Hybrid electric vehicles (HEVs) are considered as the most commercial prospects new energy vehicles. Most HEVs have adopted Atkinson cycle engine as the main drive power. Atkinson cycle engine uses late intake valve closing (LIVC) to reduce pumping losses and compression work in part load operation. It can transform more heat energy to mechanical energy, improve engine thermal efficiency and decrease fuel consumption. In this paper, the investigations of Atkinson cycle converted from conventional Otto cycle gasoline engine have been carried out. First of all, high geometry compression ratio (CR) has been optimized through piston redesign from 10.5 to 13 in order to overcome the intrinsic drawback of Atkinson cycle in that combustion performance deteriorates due to the decline in the effective CR. Then, both intake and exhaust cam profile have been redesigned to meet the requirements of Atkinson cycle engine.
Technical Paper

Volumetric Tire Models for Longitudinal Vehicle Dynamics Simulations

2016-04-05
2016-01-1565
Dynamic modelling of the contact between the tires of automobiles and the road surface is crucial for accurate and effective vehicle dynamic simulation and the development of various driving controllers. Furthermore, an accurate prediction of the rolling resistance is needed for powertrain controllers and controllers designed to reduce fuel consumption and engine emissions. Existing models of tires include physics-based analytical models, finite element based models, black box models, and data driven empirical models. The main issue with these approaches is that none of these models offer the balance between accuracy of simulation and computational cost that is required for the model-based development cycle. To address this issue, we present a volumetric approach to model the forces/moments between the tire and the road for vehicle dynamic simulations.
Journal Article

A New Control Strategy for Electric Power Steering on Low Friction Roads

2014-04-01
2014-01-0083
In vehicles equipped with conventional Electric Power Steering (EPS) systems, the steering effort felt by the driver can be unreasonably low when driving on slippery roads. This may lead inexperienced drivers to steer more than what is required in a turn and risk losing control of the vehicle. Thus, it is sensible for tire-road friction to be accounted for in the design of future EPS systems. This paper describes the design of an auxiliary EPS controller that manipulates torque delivery of current EPS systems by supplying its motor with a compensation current controlled by a fuzzy logic algorithm that considers tire-road friction among other factors. Moreover, a steering system model, a nonlinear vehicle dynamics model and a Dugoff tire model are developed in MATLAB/Simulink. Physical testing is conducted to validate the virtual model and confirm that steering torque decreases considerably on low friction roads.
Technical Paper

Improving Stability of a Narrow Track Personal Vehicle using an Active Tilting System

2014-04-01
2014-01-0087
A compact sized vehicle that has a narrow track could solve problems caused by vehicle congestion and limited parking spaces in a mega city. Having a smaller footprint reduces the vehicle's total weight which would decrease overall vehicle power consumption. Also a smaller and narrower vehicle could travel easily through tight and congested roads that would speed up the traffic flow and hence decrease the overall traffic volume in urban areas. As an additional benefit of having a narrow track length, a driver can experience similar motorcycle riding experience without worrying about bad weather conditions since a driver sits in a weather protected cabin. However, reducing the vehicle's track causes instability in vehicle dynamics, which leads to higher possibility of rollovers if the vehicle is not controlled properly. A three wheel personal vehicle with an active tilting system is designed in MapleSim.
Technical Paper

Refrigeration Load Identification of Hybrid Electric Trucks

2014-04-01
2014-01-1897
This paper seeks to identify the refrigeration load of a hybrid electric truck in order to find the demand power required by the energy management system. To meet this objective, in addition to the power consumption of the refrigerator, the vehicle mass needs to be estimated. The Recursive Least Squares (RLS) method with forgetting factors is applied for this estimation. As an example of the application of this parameter identification, the estimated parameters are fed to the energy control strategy of a parallel hybrid truck. The control system calculates the demand power at each instant based on estimated parameters. Then, it decides how much power should be provided by available energy sources to minimize the total energy consumption. The simulation results show that the parameter identification can estimate the vehicle mass and refrigeration load very well which is led to have fairly accurate power demand prediction.
Journal Article

Full-Vehicle Model Development for Prediction of Fuel Consumption

2013-04-08
2013-01-1358
A predictive model of a specific vehicle was modeled in the system-level physical modeling tool, MapleSim, for performance and fuel consumption prediction of a full vehicle powertrain, driving a multi-body chassis model with tire models. The project also includes investigation into overall fuel efficiency and effect on vehicle handling for different drive cycles. The goals of this project were to investigate: 1) the relationships between the forces at tire/road interfaces during various drive cycles and the fuel efficiency of a vehicle, and 2) the interaction between the powertrain and the chassis of the vehicle. To accomplish these goals, a complete vehicle model was created in the lumped-parameter physical modeling tool, MapleSim. A great deal of effort has gone into using real parameters and to assure that some mathematical rigour has been employed in its development.
Technical Paper

The University of Waterloo Alternative Fuels Team's Approach to EcoCAR 2

2012-09-10
2012-01-1761
A series plug-in hybrid electric powertrain with all-wheel drive is designed using real-world drive cycles as part of the EcoCAR 2 competition. A stock 2013 Chevrolet Malibu Eco is being re-engineered to reduce fuel consumption and emissions while improving consumer acceptability. Waterloo utilizes a 18.9 kWh A123 energy storage system (ESS), which powers two 105 kW TM4 traction motors. A 2.4 L LE9 General Motors coupled to a 105 kW TM4 motor provides range extending performance. Each step of the design process is discussed, including a novel approach to powertrain selection and controls requirement selection that uses real-world drive cycles. The mechanical integration and unique ESS design is also discussed.
Technical Paper

Impact of One Side Hydrophobic Gas Diffusion Layer on Water Removal Rate and Proton Exchange Membrane Fuel Cell Performance

2012-04-16
2012-01-1221
Proton exchange membrane fuel cell (PEMFC) is considered to be one of the best clean power sources for transportation application. Water management is a critical issue, conventionally achieved by coating the cell components with the hydrophobic materials. In this work, the effects of one surface-coated cathode gas diffusion layer (GDL) on water removal rate, droplet dynamics, and the cell performance have been studied. The coated GDL is fabricated by coating one side of raw GDL (SpectraCarb 2050-A) with 15 wt. % of polytetrafluoroethylene (PTFE) solution but the other side remains uncoated. The raw GDL is commercial one and made of carbon fiber. The contact angles (θ) on both sides of the coated and raw GDL are measured. The pore size distribution, and capillary pressure are measured for the GDL, studied using the method of standard porosimetry (MSP). Water removal rate is measured by using a 20 ml syringe barrel, wherein a 13 mm diameter GDL token is stuck on the barrel opening.
Technical Paper

Development of a High-Fidelity Series-Hybrid Electric Vehicle Model using a Mathematics-Based Approach

2011-05-17
2011-39-7201
The recent increase in oil prices and environmental concerns have attracted various research efforts on hybrid electric vehicles (HEVs) which provide promising alternatives to conventional engine-powered vehicles with better fuel economy and fewer emissions. To speed up the design and prototyping processes of new HEVs, a method that automatically generates mathematics equations governing the vehicle system response in an optimized symbolic form is desirable. To achieve this goal, we employed MapleSimTM, a new physical modeling tool developed by Maplesoft Inc., to develop the multi-domain model of a series-HEV, utilizing the symbolic computing algorithms of Maple software package to generate an optimized set of governing equations. The HEV model consists of a mean-value internal combustion engine (ICE), a chemistry-based Ni-MH battery pack, and a multibody vehicle model. Simulations are then used to demonstrate the performance of the developed HEV system.
Journal Article

An Efficient Lift Control Technique in Electro-hydraulic Camless Valvetrain Using Variable Speed Hydraulic Pump

2011-04-12
2011-01-0940
Significant improvement in fuel consumption, torque delivery and emission could be achieved through flexible control of the valve timings, duration and lift. In most existing electro-hydraulic variable valve actuation systems, the desired valve lift within every engine cycle is achieved by accurately controlling of the solenoid-valve opening interval; however, due to slow response time, precision control of these valves is difficult particularly during higher engine speeds. In this paper a new lift control strategy is proposed based on the hydraulic supply pressure and flow control. In this method, in order to control the peak valve lift, the hydraulic pump speed is precisely controlled using a two-input gearbox mechanism. This eliminates the need for precision control of the solenoid valves opening interval within every cycle.
Technical Paper

A New Air Hybrid Engine Using Throttle Control

2009-04-20
2009-01-1319
In this work, a new air hybrid engine is introduced in which two throttles are used to manage the engine load in three modes of operation i.e. braking, air motor, and conventional mode. The concept includes an air tank to store pressurized air during braking and rather than a fully variable valve timing (VVT) system, two throttles are utilized. Use of throttles can significantly reduce the complexity of air hybrid engines. The valves need three fixed timing schedules for the three modes of operation. To study this concept, for each mode, the results of engine simulations using GT-Power software are used to generate the operating maps. These maps show the maximum braking torque as well as maximum air motor torque in terms of air tank pressure and engine speed. Moreover, the resulting maps indicate the operating conditions under which each mode is more effective. Based on these maps, a power management strategy is developed to achieve improved fuel economy.
Technical Paper

Dynamic Analyses of Different Concept Car Suspension System Layouts

2009-04-20
2009-01-0360
Ride performance characteristics of a road vehicle involving different suspension system layouts are investigated. The suspension layouts consist of conventional rectangular 4-wheel, novel diamond-shaped 4-wheel, triangular 3-wheel and inverse-triangular 3-wheel. A generalized full-vehicle model integrating different suspension system layouts is formulated. The fundamental suspension properties are compared in terms of bounce-, roll- and pitch-mode. The ride dynamic responses and power consumption characteristics are explored under two measured road roughness excitations and a range of vehicle speeds. The results demonstrate that the novel diamond-shaped suspension system layout could yield significantly enhanced vehicle ride performance in an energy-saving manner.
Journal Article

Integrated Stability Control System for Electric Vehicles with In-wheel Motors using Soft Computing Techniques

2009-04-20
2009-01-0435
An electric vehicle model has been developed with four direct-drive in-wheel motors. A high-level vehicle stability controller is proposed, which uses the principles of fuzzy logic to determine the corrective yaw moment required to minimize the vehicle sideslip and yaw rate errors. A genetic algorithm has been used to optimize the parameters of the fuzzy controller. The performance of the controller is evaluated as the vehicle is driven through a double-lane-change maneuver. Preliminary results indicate that the proposed control system has the ability to improve the performance of the vehicle considerably.
X