Refine Your Search

Search Results

Viewing 1 to 6 of 6
Technical Paper

An Investigation on the Regeneration of Lean NOx Trap Using Ethanol and n-Butanol

2019-04-02
2019-01-0737
Reduction of nitrogen oxides (NOx) in lean burn and diesel fueled Compression Ignition (CI) engines is one of the major challenges faced by automotive manufacturers. Lean NOx Trap (LNT) and urea-based Selective Catalytic Reduction (SCR) exhaust after-treatment systems are well established technologies to reduce NOx emissions. However, each of these technologies has associated advantages and disadvantages for use over a wide range of engine operating conditions. In order to meet future ultra-low NOx emission norms, the use of both alternative fuels and advanced after-treatment technology may be required. The use of an alcohol fuel such as n-butanol or ethanol in a CI engine can reduce the engine-out NOx and soot emissions. In CI engines using LNTs for NOx reduction, the fuel such as diesel is utilized as a reductant for LNT regeneration.
Technical Paper

An Investigation of Near-Spark-Plug Flow Field and Its Effect on Spark Behavior

2019-04-02
2019-01-0718
In the recent decades, the emission and fuel efficiency regulations put forth by the emission regulation agencies have become increasingly stringent and this trend is expected to continue in future. The advanced spark ignition (SI) engines can operate under lean conditions to improve efficiency and reduce emissions. Under such lean conditions, the ignition and complete combustion of the charge mixture is a challenge because of the reduced charge reactivity. Enhancement of the in-cylinder charge motion and turbulence to increase the flame velocity, and consequently reduce the combustion duration is one possible way to improve lean combustion. The role of air motion in better air-fuel mixing and increasing the flame velocity, by enhancing turbulence has been researched extensively. However, during the ignition process, the charge motion can influence the initial spark discharge, resulting flame kernel formation, and flame propagation.
Technical Paper

Ion Current Measurement of Diluted Combustion Using a Multi-Electrode Spark Plug

2018-04-03
2018-01-1134
Close-loop feedback combustion control is essential for improving the internal combustion engines to meet the rigorous fuel efficiency demands and emission legislations. A vital part is the combustion sensing technology that diagnoses in-cylinder combustion information promptly, such as using cylinder pressure sensor and ion current measurement. The promptness and fidelity of the diagnostic are particularly important to the potential success of using intra-cycle control for abnormal cycles such as super knocking and misfiring. Many research studies have demonstrated the use of ion-current sensing as feedback signal to control the spark ignition gasoline engines, with the spark gap shared for both ignition and ion-current detection. During the spark glow phase, the sparking current may affect the combustion ion current signal. Moreover, the electrode gap size is optimized for sparking rather than measurement of ion current.
Technical Paper

Early Pilot Injection Strategies for Reactivity Control in Diesel-ethanol Dual Fuel Combustion

2018-04-03
2018-01-0265
This paper examines the diesel-ethanol dual fuel combustion at medium engine loads on a single-cylinder research diesel engine with a compression ratio of 16.5:1. The effect of exhaust gas recirculation (EGR) and ethanol energy ratio was investigated for the dual fuel combustion to achieve simultaneously ultra-low NOx and soot emissions. A medium ethanol ratio of about 0.6 was found suitable to meet the requirements for mixing enhancement and ignition control, which resulted in the lowest NOx and soot emissions among the tested ethanol ratios. A double-pilot injection strategy was found competent to lower the pressure rise rate owing to the reduced fuel quantity in the close-to-TDC injection. The advancement of pilot injection timing tended to reduce the CO and THC emissions, which is deemed beneficial for high EGR operations. The reactivity mutual-modulation between the diesel pilot and the background ethanol mixture was identified.
Technical Paper

Hydrocarbon Speciation of Diesel Ignited Ethanol and Butanol Engines

2016-04-05
2016-01-0773
Dual fuel applications of alcohol fuels such as ethanol or butanol through port injection with direct injection of diesel can be effective in reduction of NOx. However, these dual fuel applications are usually associated with an increase in the incomplete combustion products such as hydrocarbons (HC), carbon monoxide (CO), and hydrogen (H2) emissions. An analysis of these products of incomplete combustion and the resulting combustion efficiency penalty was made in the diesel ignited alcohol combustion modes. The effect of EGR application was evaluated using ethanol and butanol as the port injected fuel, with varying alcohol fractions at the mid-load condition (10 -12 bar IMEP). The impact of varying the engine load (5 bar to 19 bar IMEP) in the diesel ignited ethanol mode on the incomplete combustion products was also studied. Emission measurements were taken and the net fuel energy loss as a result of the incomplete combustion was estimated.
Journal Article

Impact of Fuelling Techniques on Neat n-Butanol Combustion and Emissions in a Compression Ignition Engine

2015-04-14
2015-01-0808
This study investigated neat n-butanol combustion, emissions and thermal efficiency characteristics in a compression ignition (CI) engine by using two fuelling techniques - port fuel injection (PFI) and direct injection (DI). Diesel fuel was used in this research for reference. The engine tests were conducted on a single-cylinder four-stroke DI diesel engine with a compression ratio of 18.2 : 1. An n-Butanol PFI system was installed to study the combustion characteristics of Homogeneous Charge Compression Ignition (HCCI). A common-rail fuel injection system was used to conduct the DI tests with n-butanol and diesel. 90 MPa injection pressure was used for the DI tests. The engine was run at 1500 rpm. The intake boost pressure, engine load, exhaust gas recirculation (EGR) ratio, and DI timing were independently controlled to investigate the engine performance.
X