Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Technical Paper

Maximized Energy Absorption and an Investigation on Practical Limitations for the Axial Cutting and Hybrid Cutting/Clamping Deformation Modes

2021-04-06
2021-01-0285
The axial cutting deformation mode is a novel alternative to progressive folding, the current state-of-the-art, where the cutting scheme exhibits more favorable mechanical performance. By splitting the extrusion into multiple evenly spaced and near-identical petals a highly consistent force response can be achieved. Maximizing the energy absorbing capacity of a sacrificial energy absorber is a fundamental design challenge in the field of crashworthiness. Generating hybrid deformation modes by simultaneously combining multiple deformation mechanisms into a single safety system is a promising technique to achieve high capacity energy dissipation. However, these systems tend to be susceptible to transitioning deformation modes (e.g. from progressive folding to global bending) since the sacrificial material is often loaded at or near its capacity.
Journal Article

Experimental Investigation of Axial Cutting of AA6061 Extrusions under a Tension Deformation Mode

2020-04-14
2020-01-0206
A plethora of applications in the transportation industry for both vehicular and roadside safety hardware, especially seatbelts, harnesses and restraints, rely on tensile loading to dissipate energy and minimize injury. There are disadvantages to the current state-of-the-art for these tensile energy absorbers, including erratic force-displacement responses and low tensile force efficiencies (TFE). Axial cutting was extensively demonstrated by researchers at the University of Windsor to maintain a stable reaction force, although exclusively under compressive loading. A novel apparatus was investigated in this study which utilized axial cutting under a tensile loading condition to absorb energy. A parametric scope was chosen to include circular AA6061 extrusions in both T4 and T6 temper conditions with an outer diameter of 63.5 mm and wall thickness of 3.18 mm.
Journal Article

The Effect of Backing Profile on Cutting Blade Wear during High-Volume Production of Carbon Fiber-Reinforced Composites

2018-04-03
2018-01-0158
Carbon fiber sheet molding compound (SMC) is an attractive material for automotive lightweighting applications, but several issues present themselves when adapting a process developed for glass fiber composites to instead use carbon fibers. SMC is a discontinuous fiber material, so individual carbon fiber tows must be chopped into uniform rovings before being compounded with the resin matrix. Rotary chopping is one such method for producing rovings, but high wear rates are seen when cutting carbon fibers. Experiments were performed to investigate the wear progression of cutting blades during rotary carbon fiber chopping. A small rotary chopper with a polyurethane (PU) backing and thin, hardened steel blades was used to perform extended wear tests (120,000 chops, or until failure to reliably chop tows) to simulate the lifespan of blades during composite material production.
Technical Paper

General and Galvanic Corrosion Behavior of Aluminized Ultra-High Strength Steel (UHSS) and Magnesium Alloy AZ35 Altered by Plasma Electrolytic Oxidation Coating Processes

2017-03-28
2017-01-0506
Ultra-high strength steel (UHSS) and magnesium (Mg) alloy have found their importance in response to automotive strategy of light weighting. UHSS to be metal-formed by hot stamping usually has a hot-dipped aluminum-silicon alloy layer on its surface to prevent the high temperature scaling during the hot stamping and corrosion during applications. In this paper, a plasma electrolytic oxidation (PEO) process was used to produce ceramic oxide coatings on aluminized UHSS and Mg with intention to further improve their corrosion resistances. A potentiodynamic polarization corrosion test was employed to evaluate general corrosion properties of the individual alloys. Galvanic corrosion of the aluminized UHSS and magnesium alloy coupling with and without PEO coatings was studied by a zero resistance ammeter (ZRA) test. It was found that the heating-cooling process simulating the hot stamping would reduce anti-corrosion properties of aluminized UHSS due to the outward iron diffusion.
Technical Paper

Modular Design and Methods to Optimize Seat Complete Assemblies

2017-03-28
2017-01-1309
Modularity in product architecture and its significance in product development have become an important product design topics in the last few decades. Several Product Modularity definitions and methodologies were developed by many researchers; however, most of the definitions and concepts have proliferated to the extent that it is difficult to apply one universal definition for modular product architecture and in product development. Automotive seat modular strategy and key factors for consideration towards modular seat design and assemblies are the main focus of this work. The primary objectives are focused on the most “natural segmentation” of the seat elements (i.e., cushions, backs, trims, plastics, head restraints, etc.) to enable the greatest ease of final assembly and greatest flexibility for scalable feature offerings around common assembly “hard-points.”
Technical Paper

A Review of Human Physiological, Psychological & Human Biomechanical Factors on Perceived Thermal Comfort of Automotive Seats.

2017-03-28
2017-01-1388
Thermal comfort in automotive seating has been studied and discussed for a long time. The available research, because it is focused on the components, has not produced a model that provides insight into the human-seat system interaction. This work, which represents the beginning of an extensive research program, aims to establish the foundation for such a model. This paper will discuss the key physiological, psychological, and biomechanical factors related to perceptions of thermal comfort in automotive seats. The methodology to establish perceived thermal comfort requirements will also be presented and discussed.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Technical Paper

Kinematic Analysis of a 6DOF Gantry Machine

2015-04-14
2015-01-0497
Gantry robots are mainly employed for applications requiring large workspace, with limited higher manipulability in one direction than the others. The Gantries offer very good mechanical stiffness and constant positioning accuracy, but low dexterity. Common gantries are CNC machines with three translational joints XYZ (3DOF) and usually with an attached wrist (+3DOF). The translational joints are used to move the tool in any position in the 3D workspace. The wrist is used to orient the tool by rotation about X, Y and Z axis. This standard kinematic structure (3T3R) produces a rectangular workspace. In this paper a full kinematic model for a 6DOF general CNC (gantry) machine is presented, along with the Jacobian matrix and singularity analysis. Using Denavit-Hartenberg convention, firstly, the general kinematic structure is presented, in order to assign frames at each link. The forward kinematic problem is solved using Maple 17 software.
Technical Paper

The Band Importance Function in the Evaluation of the Speech Intelligibility Index at the Speech Reception Threshold within a Simulated Driving Environment

2013-05-13
2013-01-1953
This study provides an overview of a novel method for evaluating in-vehicle speech intelligibility using the Speech Intelligibility Index (SII). The approach presented is based on a measured speech signal evaluated at the sentence Speech Reception Threshold (sSRT) in a simulated driving environment. In this context, the impact of different band importance functions in the evaluation of the SII using the Hearing in Noise Test (HINT) in a driving simulator is investigated.
Technical Paper

Effect of Cooling Rates on the Microstructure Evolution and Eutectic Formation of As-cast Mg-Al-Ca Alloys

2009-04-20
2009-01-0789
A Mg-5.0wt.%Al-2.0wt.%Ca alloy (AC52) was cast at different cooling rates varying from 0.5 to 65 °C/s. The dendrites was characterized by determining the secondary dendrite arm spacing (SDAS) and the volume fraction of secondary eutectic phases with the linear intercept and point counting methods, respectively. The SDAS decreases significantly with increasing cooling rates, while the volume fraction of the eutectic phase increases from 10.8 ± 1.44 vol.% at 0.5 °C/s to 20.4 ± 1.52 vol.% at 20 °C/s. However, a further increase in cooling rate beyond 20 °C/s has limited influence on the volume fraction of eutectic phases. A large number of dispersed eutectic phases were observed in the primary α-Mg of the alloys cast at low cooling rates. Although, at the microscale, there were no dispersed eutectic phases in alloys cast at a high cooling rate of 30 °C/s, nanoscale eutectic phases were found by TEM observation.
Technical Paper

An Experimental Method to Study the Sensitivity of Transmission Laser Welding of Plastic Parts to Interfacial Gaps

2009-04-20
2009-01-1298
Hollow polymer-based automotive components cannot, in general, be directly injection molded because they cannot be ejected from the mold. The common practice is to injection mold two or more parts, and then join these together with a welding process. Of the many joining process available, laser welding has an advantage in geometric design freedom. The laser weld joints are also generally stronger than those of vibration welds because the weld joints are located in the walls rather than on external flanges. Eliminating the external flanges also makes the part more compact. In transmission laser welding processes, the laser beam passes through a transparent part to its interface with an opaque part. The beam energy is absorbed near the interface in the opaque part, and heat flows back across to the transparent half to make the weld pool. So successful laser welds are possible only when there is a continuous interfacial fit between the parts.
Journal Article

Virtual Motorsports as a Vehicle Dynamics Teaching Tool

2008-12-02
2008-01-2967
The paper describes a ‘virtual motorsports’ event developed by the University of Windsor Vehicle Dynamics and Control Research Group. The event was a competitive project-based component of a Vehicle Dynamics course offered by the University's Department of Mechanical, Automotive, & Materials Engineering. The simulated race was developed to provide fourth year automotive engineering students with design and race experience, similar to that found in Formula SAE®or SAE Baja®, but within the confines of a single academic semester. The project, named ‘Formula463’, was conducted entirely within a virtual environment, and encompassed design, testing, and racing of hi-fidelity virtual vehicle models. The efficacy of the Formula463 program to provide students with a design experience using model based simulation tools and methods has been shown over the past two years. All of the software has been released under a General Public License and is freely available on the authors website.
Journal Article

Simulation of the Axial Cutting Deformation of AA6061-T6 Round Tubes Utilizing Eulerian and Mesh Free Finite Element Formulations

2008-04-14
2008-01-1117
Experimental and numerical studies have been completed on the deformation behaviour of round AA6061-T6 aluminum extrusions during an axial cutting deformation mode employing both curved and straight deflectors to control the bending deformation of petalled side walls. Round extrusions of length 200 mm with a nominal wall thickness of 3.175 mm and an external diameter of 50.8 mm were considered. A heat treated 4140 steel alloy cutter and deflectors, both straight and curved, were designed and manufactured for the testing considered. The four blades of the cutter had an approximate average thickness of 1.00 mm which were designed to penetrate through the round AA6061-T6 extrusions. Experimental observations illustrated high crush force efficiencies of 0.82 for the extrusions which experienced the cutting deformation mode with the deflectors. Total energy absorption during the cutting process was approximately 5.48 kJ.
Technical Paper

Roof Strength Requirement for Vehicles Involved in Rollover Crash

2008-04-14
2008-01-0510
Rollover crash is one of the most serious safety problems for light weight vehicles. In the USA, rollover crashes account for almost one-third of all occupant fatalities in light weight vehicles. Similar statistics are found for other countries. Thus, rollover crashes have received significant attention in recent years. In the USA and Canada, automotive manufacturers are required to comply with the roof strength requirement of “1.5 times the unloaded vehicle weight” to ensure safety in rollover. NHTSA is currently considering a set of countermeasures to improve the rollover safety, where one of the proposals is to increase the roof strength limit to “2.5 times the unloaded vehicle weight”. This increased roof strength limit seemingly has been motivated based on the benchmark study of current vehicle fleet.
Technical Paper

Variable Torque Distribution Yaw Moment Control for Hybrid Powertrains

2007-04-16
2007-01-0278
This paper proposes and evaluates the use of a robust variable torque distribution (VTD) yaw moment control for an all wheel drive (AWD) hybrid vehicle prototype currently under development. The proposed VTD controller was used to improve the linearity of vehicle response to driver input through the modulation of front-to-rear torque distribution and a corrective torque differential between the left and right rear wheels. The development of a non-linear vehicle model and a reference model tracking sliding mode based control are discussed. The efficacy of the proposed control system was demonstrated through the use of numerical simulations using the developed non-linear vehicle model. The simulation results presented indicate the effectiveness of the proposed system and the potential restrictions to such a system including tire saturation and drivetrain component limitations.
Technical Paper

Separation and Liberation Factors in Designing for Automotive Materials Recovery

2004-03-08
2004-01-0471
One critical aspect of design-for-environment efforts is to increase the effectiveness of materials recovery from end-of-life vehicles. Recovery itself depends on both the amount of material recovered and the purity of the material stream. Shredding, and screening are often used to separate recyclable materials from wastes. However, with the increasing amount of composite components, particularly those made from plastics, separation processes may be inadequate. Instead, liberation processes, which reduce the physical joints between materials, are also important. In this research, samples of ABS and PVC plastics were assembled into various configurations, ground up, and then characterized by their size distributions and degrees of liberation. Two primary fastening methods - adhesive and riveting - were used to simulate how plastic components would be actually attached together.
X