Refine Your Search

Topic

Author

Search Results

Technical Paper

Oxygenated Fuels as Reductants for Lean NOx Trap Regeneration

2024-04-09
2024-01-2132
The push for environmental protection and sustainability has led to strict emission regulations for automotive manufacturers as evident in EURO VII and 2026 EPA requirements. The challenge lies in maintaining fuel efficiency and simultaneously reducing the carbon footprint while meeting future emission regulations. Alcohol (primarily methanol, ethanol, and butanol) and ether (dimethyl ether) fuels, owing to their comparable energy density to existing fuels, the comparative ease of handling, renewable production, and suitable emission characteristics may present an attractive drop-in replacement, fully or in part as an additive, to the gasoline/diesel fuels, without extensive modifications to the engine geometry. Additionally, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines.
Technical Paper

Performance of Spark Current Boost System on a Production Engine under Lean-Burn Conditions

2024-04-09
2024-01-2106
In order to improve the fuel economy for future high-efficiency spark ignition engines, the applications of advanced combustion strategies are considered to be beneficial with an overall lean and/or exhaust gas recirculation diluted cylinder charge. Stronger and more reliable ignition sources become more favorable under extreme lean/EGR conditions. Existing research indicates that the frequency of plasma restrikes increases with increased flow velocity and decreased discharge current level, and a higher discharge current can reduce the gap resistance and maintain the stretched plasma for a longer duration under flow conditions. An in-house developed current boost control system provides flexible control of the discharge current level and discharge duration. The current boost ignition system is based on a multi-coil system with a discharge current level of 180mA.
Technical Paper

Study of Dimethyl Ether Fuel Spray Characteristics and Injection Profile

2024-04-09
2024-01-2702
The majority of transportation systems have continued to be powered by the internal combustion engine and fossil fuels. Heavy-duty applications especially are reliant on diesel engines for their high brake efficiency, power density, and robustness. Although engineering developments have advanced engines towards significantly fewer emissions and higher efficiency, the use of fossil-derived diesel as fuel sets a fundamental threshold in the achievable total net carbon reduction. Dimethyl ether can be produced from various renewable feedstocks and has a high chemical reactivity making it suitable for heavy-duty applications, namely compression ignition direct injection engines. Literature shows the successful use of DME fuels in diesel engines without significant hardware modifications.
Technical Paper

Effect of Spark Assisted Compression Ignition on the End-Gas Autoignition with DME-air Mixtures in a Rapid Compression Machine

2024-04-09
2024-01-2822
Substantial effort has been devoted to utilizing homogeneous charge compression ignition (HCCI) to improve thermal efficiency and reduce emission pollutants in internal combustion engines. However, the uncertainty of ignition timing and limited operational range restrict further adoption for the industry. Using the spark-assisted compression ignition (SACI) technique has the advantage of using a spark event to control the combustion process. This study employs a rapid compression machine to characterize the ignition and combustion process of Dimethyl ether (DME) under engine-like background temperature and pressures and combustion regimes, including HCCI, SACI, and knocking onsite. The spark ignition timing was swept to ignite the mixture under various thermodynamic conditions. This investigation demonstrates the presence of four distinct combustion regimes, including detonation, strong end-gas autoignition, mild end-gas autoignition, and HCCI.
Technical Paper

Investigation of Fuel Injection Pressure Impact on Dimethyl Ether Combustion

2023-10-31
2023-01-1644
Compression ignition engines used in heavy-duty applications are typically powered by diesel fuel. The high energy density and feedstock abundance provide a continuing source for the immense energy demand. However, the heavy-duty transportation sector is challenged with lowering greenhouse gas and combustion by-product emissions, including carbon dioxide, nitrogen oxides, and particulate matter. The continuing development of engine management and combustion strategies has proven the ability to meet current regulations, particularly with higher fuel injection pressure. Nonetheless, a transition from diesel to a renewable alternative fuel source will play a significant role in reducing greenhouse gases while maintaining the convenience and energy density inherent in liquid fuels. Dimethyl ether is a versatile fuel that possesses combustion properties suitable for compression ignition engines and physical properties helpful for clean combustion.
Technical Paper

Performance and Emission Characteristics of Direct Injection DME Combustion under Low NOx Emissions

2023-04-11
2023-01-0327
Compression ignition internal combustion engines provide unmatched power density levels, making them suitable for numerous applications including heavy-duty freight trucks, marine shipping, and off-road construction vehicles. Fossil-derived diesel fuel has dominated the energy source for CI engines over the last century. To mitigate the dependency on fossil fuels and lessen anthropogenic carbon released into the atmosphere within the transportation sector, it is critical to establish a fuel source which is produced from renewable energy sources, all the while matching the high-power density demands of various applications. Dimethyl ether (DME) has been used in non-combustion applications for several decades and is an attractive fuel for CI engines because of its high reactivity, superior volatility to diesel, and low soot tendency. A range of feedstock sources can produce DME via the catalysis of syngas.
Journal Article

Development of a Novel High Strength Aluminum-Cerium Based Rotor Alloy for Electric Vehicle Induction Motor Applications

2023-04-11
2023-01-0878
To increase vehicle range, light weighting of electric vehicles has been extensively researched and implemented by using aluminum intensive solutions. With regards to traction motors, aluminum alloys that have a desired combination of high electrical conductivity and strength are required for high power output and efficiency. In this research, a novel Al-Ce based alloy, with minor additions of Si and Mg for strengthening, was investigated in different heat treatment tempers to maximize mechanical properties while maintaining a high electrical conductivity. This new alloy system appears to have addressed the classic conundrum of the inverse relationship of mechanical performance verses electrical conductivity for traditional aluminum alloy systems. The results suggest that the Al-Ce-Si-Mg alloy had yield strength in excess of 120 MPa and electrical conductivity of at least 50 %IACS in the T5 and T6 conditions.
Technical Paper

An Investigation of OME3-Diesel Fuel Blend on a Multi-Cylinder Compression Ignition Engine

2022-03-29
2022-01-0439
Oxygenated, low energy-density fuels have the potential to decouple the NOx-soot emissions trade-off in compression-ignition engines. Additionally, synthetic fuels can provide a pathway to reach carbon-neutral utilization of hydrocarbon-based fuels in IC engines. Oxymethylene Dimethyl Ether (OME) is one such synthetic, low energy-density fuel, derived from sustainable sources that in combination with conventional fossil fuels with higher energy content, has the potential to reduce CO2 emissions below the US and EU VI legislative limits, while maintaining ultra-low soot emissions. The objective of this work is to investigate and compare the performance, emissions and efficiency of a modern multi-cylinder diesel engine under conventional high temperature combustion (HTC) with two different fuels; 1) OME310 - a blend of 10% OME3 by volume, with conventional Ultra-Low Sulphur Diesel (ULSD), and 2) D100 - conventional ULSD in North America.
Technical Paper

Electrical Insulation Properties of Alumina Coatings on SAE 52100 Bearing Steel

2022-03-29
2022-01-0726
In recent years, bearing electrical failures have been a significant concern in electric cars, restricting electric engine life. This work aims to introduce a coating approach for preventing electrical erosion on 52100 alloy steel samples, the most common material used on manufacturing bearings. This paper discusses the causes of shaft voltage and bearing currents, and summarizes standard electrical bearing failure mechanisms, such as morphological damages and lubrication failures. Alumina coatings are suitable for insulating the 52100 alloy steel samples because alumina coatings provide excellent insulation, hardness, and corrosion resistance, among other characteristics. The common method to coat an insulated alumina coating on the bearing is thermal spraying, but overspray can cause environmental issues, and the coating procedures are costly and time-consuming.
Technical Paper

A Study of Combustion Inefficiencies in SI Engines Powered by Alcohol and Ether Fuels Using Detailed Emission Speciation

2022-03-29
2022-01-0520
Advanced combustion engines, as power sources, dominate all aspects of the transportation sector. Stringent emission and fuel efficiency standards have promoted the research interest in advanced combustion strategies and alternative fuels. Owing to the comparable energy density to the existing fossil fuels and renewable production, alcohol and ether fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. Furthermore, lean and diluted combustion are well-researched pathways for efficiency improvement and reduction of engine-out emissions of modern engines. However, lean-burn or EGR dilution can introduce combustion inefficiencies in the form of excessive hydrocarbon, carbonyl species and carbon monoxide emissions.
Technical Paper

Combustion Characterization of DME-Fueled Dual Fuel Combustion with Premixed Ethanol

2022-03-29
2022-01-0461
The heterogeneous nature of direct injection (DI) combustion yields high combustion efficiencies but harmful emissions through the formation of high nitrogen oxide (NOx) and smoke emissions. In response, extensive empirical and computational research has focused on balancing the NOx-smoke trade-off to limit diesel DI combustion emissions. Dimethyl ether (DME) fuel is applicable in DI compression ignition engines and its high fuel oxygen produces near-smoke-free emissions. Moreover, the addition of a premixed fuel can improve mixture homogeneity and minimize the DI fuel energy demands lessening injection durations. For this technique, a low reactivity fuel such as ethanol is essential to avoid early autoignition in high compression ratio engines. In this work, empirical experiments of dual fuel operation have been conducted using premixed ethanol with high-pressure direct injection DME.
Technical Paper

Investigation of Flame Detachment Effect during Early Flame Development in a Swirl Flow Field

2021-04-06
2021-01-0482
Lean burn is regarded as one of the most effective ways to improve fuel efficiency for spark ignition engines. However, the excessive air dilution deteriorates combustion stability, limiting the degree of engine operational dilution. The intensified flow field is therefore introduced into the cylinder to mitigate the decline of the burning velocity caused by the leaned-out fuel-air mixture. In a moderate flow field, flame kernels are formed near the hot spark plasma during discharge and stick to the spark gap even after the end of discharge; the flame front then propagates outward and evolves into self-sustained flame. Flame attaching to the spark gap is a common phenomenon in the early combustion stage and has been reported to be beneficial for flame inception in the literature.
Technical Paper

Electrochemical Analysis of High Capacity Li-Ion Pouch Cell for Automotive Applications

2021-04-06
2021-01-0760
Major original equipment manufacturers (OEMs) have already marketed electric vehicles in large scale but apart from business strategies and policies, the real engineering problems must be addressed. Lithium-ion batteries are a promising technology for energy storage; however, their low energy density and complex electro-chemical nature, compared to fossil fuels, presents additional challenges. Their complex nature and strong temperature dependence during operation must be studied with additional accuracy, capable to predict their behavior. In this research, a pseudo two dimensional (P2D) electro-chemical model, for a recent high capacity NMC pouch cell for automotive applications is developed. The electrochemical model with its temperature dependent parameters is validated at high, low, and reference temperature within 10°C to 50°C temperature range. For each temperature various discharge C-rates to accurately replicate the battery cell operational conditions.
Journal Article

Suitability Assessment of an Uncalibrated Body Force Based Fan Modeling Approach to Predict Automotive Underhood Airflows

2021-04-06
2021-01-0820
The automotive fan is a critical component of the cooling module, providing the majority of the cooling airflow over the heat exchangers and to underbody components at low speed, idle, and key-off conditions. Accurately predicting the performance of the automotive cooling fan is critical for sizing heat exchangers and ensuring that underhood and underbody components remain below target temperatures. This is normally done with computational fluid dynamics, but in a full-vehicle simulation it is impractical to model the rotation of the fan blades using a sliding mesh approach. Thus, simplified models which capture the fan behavior are employed. In this paper, a body force-type fan modeling approach is adopted and assessed. Many industrial fan models are calibrated based on experiments or higher-fidelity simulations. This can slow the design process. The approach employed eliminates this step, requiring only fan geometry information and no a-priori performance data.
Technical Paper

Effect of Spark Discharge Duration and Timing on the Combustion Initiation in a Lean Burn SI Engine

2021-04-06
2021-01-0478
Meeting the increasingly stringent emission and fuel efficiency standards is the primary objective of the modern automotive research. Lean/diluted combustion is a promising avenue to realize high-efficiency combustion and reduce emissions in SI engines. Under diluted conditions, the flame propagation speed is reduced because of the reduced charge reactivity. Enhancing in-cylinder charge motion and turbulence, and thereby increasing the flame speed, is a possible way to harness the combustion process in SI engines. However, charge motion can have a significant effect on the spark ignition process because of the reduced discharge duration and frequent restrikes. A longer discharge duration can aid in the formation of a self-sustained flame kernel and subsequent stable ignition. Therefore, an empirical study is undertaken to investigate the effect of discharge duration and ignition timing on the ignition and early combustion in a port fueled SI engine, operated under lean conditions.
Technical Paper

Automated Generation of AUTOSAR ECU Configurations Using Xtend: Watchdog Driver Example

2020-04-14
2020-01-1335
Automotive Open System Architecture (AUTOSAR) is a system-level standard that is formed by the worldwide partnership of the automotive manufacturers and suppliers who are working together to develop a standardized Electrical and Electronic (E/E) framework and architecture for automobiles. The AUTOSAR methodology has two main activities: system configuration and the Electronic Control Unit (ECU) configuration. The system configuration is the mapping of the software components to the ECUs based on the system requirements. The ECU configuration process is an important part of the ECU software integration and generation. ECU specific information is extracted from the system configuration description and all the necessary information for the implementation such as tasks, scheduling, assignments of the runnables to tasks and configuration of the Basic Software (BSW) modules, are performed. The ECU configuration process involves configuring every single module of the AUTOSAR architecture.
Technical Paper

An Investigation on the Regeneration of Lean NOX Trap Using Dimethyl Ether

2020-04-14
2020-01-1354
The ever-stringent emission regulations are major challenges for the diesel fueled engines in automotive industry. The applications of advanced after-treatment technologies as well as alternative fuels [1] are considered as promising methodology to reduce exhaust emission from compression ignition (CI) engines. Using dimethyl ether (DME) as an alternative fuel has been extensively studied by many researchers and automotive manufactures since DME has demonstrated enormous potential in terms of emission reduction, such as low CO emission, and soot and sulfur free. However, the effect of employing DME in a lean NOX trap (LNT) based after-treatment system has not been fully addressed yet. In this work, investigations of the long breathing LNT system using DME as a reductant were performed on a heated after-treatment flow bench with simulated engine exhaust condition.
Technical Paper

LiDAR and Camera-Based Convolutional Neural Network Detection for Autonomous Driving

2020-04-14
2020-01-0136
Autonomous vehicles are currently a subject of great interest and there is heavy research on creating and improving algorithms for detecting objects in their vicinity. A ROS-based deep learning approach has been developed to detect objects using point cloud data. With encoded raw light detection and ranging (LiDAR) and camera data, several basic statistics such as elevation and density are generated. The system leverages a simple and fast convolutional neural network (CNN) solution for object identification and localization classification and generation of a bounding box to detect vehicles, pedestrians and cyclists was developed. The system is implemented on an Nvidia Jetson TX2 embedded computing platform, the classification and location of the objects are determined by the neural network. Coordinates and other properties of the object are published on to various ROS topics which are then serviced by visualization and data handling routines.
Technical Paper

Combustion Characterization of Neat n-Butanol in an SI Engine

2020-04-14
2020-01-0334
Increasingly stringent emission standards have promoted the interest in alternate fuel sources. Because of the comparable energy density to the existing fossil fuels and renewable production, alcohol fuels may be a suitable replacement, or an additive to the gasoline/diesel fuels to meet the future emission standards with minimal modification to current engine geometry. In this research, the combustion characteristics of neat n-butanol are analyzed under spark ignition operation using a single cylinder SI engine. The fuel is injected into the intake manifold using a port-fuel injector. Two modes of charge dilution were used in this investigation to test the limits of stable engine operation, namely lean burn using excess fresh air and exhaust gas recirculation (EGR). The in-cylinder pressure measurement and subsequently, heat release analysis are used to investigate the combustion characteristics of the fuel under low load SI engine operation.
Technical Paper

Energy Enhanced Adaptive Spark Ignition for Lean Combustion Initiation

2020-04-14
2020-01-0841
For internal combustion engine systems, lean and diluted combustion is an important technology applied for fuel efficiency improvement. Because of the thermodynamic boundary conditions and the presence of in-cylinder flow, the development of a well-sustained flame kernel for lean combustion is a challenging task. Reliable spark discharge with the addition of enhanced delivered energy is thus needed at certain time durations to achieve successful combustion initiation of the lean air-fuel mixture. For a conventional transistor coil ignition system, only limited amount of energy is stored in the ignition coil. Therefore, both the energy of the spark discharge and the duration of the spark discharge are bounded. To break through the energy limit of the conventional transistor coil ignition system, in this work, an adaptive spark ignition system is introduced. The system has the ability to reconstruct the conductive ion channels whenever it is interrupted during the spark discharge.
X