Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Piston Bowl Geometry Effects on Combustion Development in a High-Speed Light-Duty Diesel Engine

2019-09-09
2019-24-0167
In this work we studied the effects of piston bowl design on combustion in a small-bore direct-injection diesel engine. Two bowl designs were compared: a conventional, omega-shaped bowl and a stepped-lip piston bowl. Experiments were carried out in the Sandia single-cylinder optical engine facility, with a medium-load, mild-boosted operating condition featuring a pilot+main injection strategy. CFD simulations were carried out with the FRESCO platform featuring full-geometric body-fitted mesh modeling of the engine and were validated against measured in-cylinder performance as well as soot natural luminosity images. Differences in combustion development were studied using the simulation results, and sensitivities to in-cylinder flow field (swirl ratio) and injection rate parameters were also analyzed.
Technical Paper

Bowl Geometry Effects on Turbulent Flow Structure in a Direct Injection Diesel Engine

2018-09-10
2018-01-1794
Diesel piston bowl geometry can affect turbulent mixing and therefore it impacts heat-release rates, thermal efficiency, and soot emissions. The focus of this work is on the effects of bowl geometry and injection timing on turbulent flow structure. This computational study compares engine behavior with two pistons representing competing approaches to combustion chamber design: a conventional, re-entrant piston bowl and a stepped-lip piston bowl. Three-dimensional computational fluid dynamics (CFD) simulations are performed for a part-load, conventional diesel combustion operating point with a pilot-main injection strategy under non-combusting conditions. Two injection timings are simulated based on experimental findings: an injection timing for which the stepped-lip piston enables significant efficiency and emissions benefits, and an injection timing with diminished benefits compared to the conventional, re-entrant piston.
Technical Paper

Autonomous Vehicles in the Cyberspace: Accelerating Testing via Computer Simulation

2018-04-03
2018-01-1078
We present an approach in which an open-source software infrastructure is used for testing the behavior of autonomous vehicles through computer simulation. This software infrastructure is called CAVE, from Connected Autonomous Vehicle Emulator. As a software platform that allows rapid, low-cost and risk-free testing of novel designs, methods and software components, CAVE accelerates and democratizes research and development activities in the field of autonomous navigation.
Journal Article

Divided Exhaust Period Implementation in a Light-Duty Turbocharged Dual-Fuel RCCI Engine for Improved Fuel Economy and Aftertreatment Thermal Management: A Simulation Study

2018-04-03
2018-01-0256
Although turbocharging can extend the high load limit of low temperature combustion (LTC) strategies such as reactivity controlled compression ignition (RCCI), the low exhaust enthalpy prevalent in these strategies necessitates the use of high exhaust pressures for improving turbocharger efficiency, causing high pumping losses and poor fuel economy. To mitigate these pumping losses, the divided exhaust period (DEP) concept is proposed. In this concept, the exhaust gas is directed to two separate manifolds: the blowdown manifold which is connected to the turbocharger and the scavenging manifold that bypasses the turbocharger. By separately actuating the exhaust valves using variable valve actuation, the exhaust flow is split between two manifolds, thereby reducing the overall engine backpressure and lowering pumping losses. In this paper, results from zero-dimensional and one-dimensional simulations of a multicylinder RCCI light-duty engine equipped with DEP are presented.
Technical Paper

Investigating Air Handling Requirements of High Load Low Speed Reactivity Controlled Compression Ignition (RCCI) Combustion

2016-04-05
2016-01-0782
Past research has shown that reactivity controlled compression ignition (RCCI) combustion offers efficiency and NOx and soot advantages over conventional diesel combustion at mid load conditions. However, at high load and low speed conditions, the chemistry timescale of the fuel shortens and the engine timescale lengthens. This mismatch in timescales makes operation at high load and low speed conditions difficult. High levels of exhaust gas recirculation (EGR) can be used to extend the chemistry timescales; however, this comes at the penalty of increased pumping losses. In the present study, targeting the high load - low speed regime, computational optimizations of RCCI combustion were performed at 20 bar gross indicated mean effective pressure (IMEP) and 1300 rev/min. The two fuels used for the study were gasoline (low reactivity) and diesel (high reactivity).
Technical Paper

Simultaneous Reduction of Soot and NOX Emissions by Means of the HCPC Concept: Complying with the Heavy Duty EURO 6 Limits without Aftertreatment System

2013-09-08
2013-24-0093
Due to concerns regarding pollutant and CO2 emissions, advanced combustion modes that can simultaneously reduce exhaust emissions and improve thermal efficiency have been widely investigated. The main characteristic of the new combustion strategies, such as HCCI and LTC, is that the formation of a homogenous mixture or a controllable stratified mixture is required prior to ignition. The major issue with these approaches is the lack of a direct method for the control of ignition timing and combustion rate, which can be only indirectly controlled using high EGR rates and/or lean mixtures. Homogeneous Charge Progressive Combustion (HCPC) is based on the split-cycle principle. Intake and compression phases are performed in a reciprocating external compressor, which drives the air into the combustor cylinder during the combustion process, through a transfer duct. A transfer valve is positioned between the compressor cylinder and the transfer duct.
Technical Paper

A Computational Investigation of the Effects of Swirl Ratio and Injection Pressure on Mixture Preparation and Wall Heat Transfer in a Light-Duty Diesel Engine

2013-04-08
2013-01-1105
In a recent study, quantitative measurements were presented of in-cylinder spatial distributions of mixture equivalence ratio in a single-cylinder light-duty optical diesel engine, operated with a non-reactive mixture at conditions similar to an early injection low-temperature combustion mode. In the experiments a planar laser-induced fluorescence (PLIF) methodology was used to obtain local mixture equivalence ratio values based on a diesel fuel surrogate (75% n-heptane, 25% iso-octane), with a small fraction of toluene as fluorescing tracer (0.5% by mass). Significant changes in the mixture's structure and composition at the walls were observed due to increased charge motion at high swirl and injection pressure levels. This suggested a non-negligible impact on wall heat transfer and, ultimately, on efficiency and engine-out emissions.
Technical Paper

A Quasi-Dimensional NOx Emission Model for Spark Ignition Direct Injection (SIDI) Gasoline Engines

2013-04-08
2013-01-1311
A fundamentally based quasi-dimensional NOx emission model for spark ignition direct injection (SIDI) gasoline engines was developed. The NOx model consists of a chemical mechanism and three sub-models. The classical extended Zeldovich mechanism and N₂O pathway for NOx formation mechanism were employed as the chemical mechanism in the model. A characteristic time model for the radical species H, O and OH was incorporated to account for non-equilibrium of radical species during combustion. A model of homogeneity which correlates fundamental dimensionless numbers and mixing time was developed to model the air-fuel mixing and inhomogeneity of the charge. Since temperature has a dominant effect on NOx emission, a flame temperature correlation was developed to model the flame temperature during the combustion for NOx calculation. Measured NOx emission data from a single-cylinder SIDI research engine at different operating conditions was used to validate the NOx model.
Technical Paper

Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for a Lean Burn Spark Ignition Direct Injection (SIDI) Gasoline Engine

2013-04-08
2013-01-1572
A Three-Way Catalyst (TWC) model with global TWC kinetics for lean burn DISI engines were developed and validated. The model incorporates kinetics of hydrocarbons and carbon monoxide oxidations, NOx reduction, water-gas and steam reforming and oxygen storage. Ammonia (NH₃) and new nitrous oxide (N₂O) kinetics were added into the model to study NH₃ and N₂O formation in TWC systems. The model was validated over a wide range of engine operating conditions using various types of experimental data from a lean burn automotive SIDI engine. First, well-controlled time-resolved steady state data were used for calibration and initial model tests. In these steady state operations, the engine was switched between lean and rich conditions for NOx emission control. Then, the model was further validated using a large set of time-averaged steady state data. Temperature dependencies of NH₃ and N₂O kinetics in the TWC model were examined and well captured by the model.
Technical Paper

Effect of Equivalence Ratio on the Particulate Emissions from a Spark-Ignited, Direct-Injected Gasoline Engine

2013-04-08
2013-01-1560
The effect of equivalence ratio on the particulate size distribution (PSD) in a spark-ignited, direct-injected (SIDI) engine was investigated. A single-cylinder, four-stroke, spark-ignited direct-injection engine fueled with certification gasoline was used for the measurements. The engine was operated with early injection during the intake stroke. Equivalence ratio was swept over the range where stable combustion was achieved. Throughout this range combustion phasing was held constant. Particle size distributions were measured as a function of equivalence ratio. The data show the sensitivity of both engine-out particle number and particle size to global equivalence ratio. As equivalence ratio was increased a larger fraction of particles were due to agglomerates with diameters ≻ 100 nm. For decreasing equivalence ratio smaller particles dominate the distribution. The total particle number and mass increased non-linearly with increasing equivalence ratio.
Journal Article

Use of Low-Pressure Direct-Injection for Reactivity Controlled Compression Ignition (RCCI) Light-Duty Engine Operation

2013-04-08
2013-01-1605
Reactivity-controlled compression ignition (RCCI) has been shown to be capable of providing improved engine efficiencies coupled with the benefit of low emissions via in-cylinder fuel blending. Much of the previous body of work has studied the benefits of RCCI operation using high injection pressures (e.g., 500 bar or greater) with common rail injection (CRI) hardware. However, low-pressure fueling technology is capable of providing significant cost savings. Due to the broad market adoption of gasoline direct injection (GDI) fueling systems, a market-type prototype GDI injector was selected for this study. Single-cylinder light-duty engine experiments were undertaken to examine the performance and emissions characteristics of the RCCI combustion strategy with low-pressure GDI technology and compared against high injection pressure RCCI operation. Gasoline and diesel were used as the low-reactivity and high-reactivity fuels, respectively.
Technical Paper

Validation of a Sparse Analytical Jacobian Chemistry Solver for Heavy-Duty Diesel Engine Simulations with Comprehensive Reaction Mechanisms

2012-09-24
2012-01-1974
The paper presents the development of a novel approach to the solution of detailed chemistry in internal combustion engine simulations, which relies on the analytical computation of the ordinary differential equations (ODE) system Jacobian matrix in sparse form. Arbitrary reaction behaviors in either Arrhenius, third-body or fall-off formulations can be considered, and thermodynamic gas-phase mixture properties are evaluated according to the well-established 7-coefficient JANAF polynomial form. The current work presents a full validation of the new chemistry solver when coupled to the KIVA-4 code, through modeling of a single cylinder Caterpillar 3401 heavy-duty engine, running in two-stage combustion mode.
Journal Article

Gasoline DICI Engine Operation in the LTC Regime Using Triple- Pulse Injection

2012-04-16
2012-01-1131
An investigation of high speed direct injection (DI) compression ignition (CI) engine combustion fueled with gasoline injected using a triple-pulse strategy in the low temperature combustion (LTC) regime is presented. This work aims to extend the operation ranges for a light-duty diesel engine, operating on gasoline, that have been identified in previous work via extended controllability of the injection process. The single-cylinder engine (SCE) was operated at full load (16 bar IMEP, 2500 rev/min) and computational simulations of the in-cylinder processes were performed using a multi-dimensional CFD code, KIVA-ERC-Chemkin, that features improved sub-models and the Chemkin library. The oxidation chemistry of the fuel was calculated using a reduced mechanism for primary reference fuel combustion chosen to match ignition characteristics of the gasoline fuel used for the SCE experiments.
Journal Article

Heavy-Duty RCCI Operation Using Natural Gas and Diesel

2012-04-16
2012-01-0379
Many recent studies have shown that the Reactivity Controlled Compression Ignition (RCCI) combustion strategy can achieve high efficiency with low emissions. However, it has also been revealed that RCCI combustion is difficult at high loads due to its premixed nature. To operate at moderate to high loads with gasoline/diesel dual fuel, high amounts of EGR or an ultra low compression ratio have shown to be required. Considering that both of these approaches inherently lower thermodynamic efficiency, in this study natural gas was utilized as a replacement for gasoline as the low-reactivity fuel. Due to the lower reactivity (i.e., higher octane number) of natural gas compared to gasoline, it was hypothesized to be a better fuel for RCCI combustion, in which a large reactivity gradient between the two fuels is beneficial in controlling the maximum pressure rise rate.
Journal Article

Replicating Instantaneous Cylinder Mass Flow Rate with Parallel Continuously and Discretely Actuating Intake Plenum Valves

2012-04-16
2012-01-0417
The focus of this paper is to discuss the modeling and control of intake plenum pressure on the Powertrain Control Research Laboratory's (PCRL) Single-Cylinder Engine (SCE) transient test system using a patented device known as the Intake Air Simulator (IAS), which dynamically controls the intake plenum pressure, and, subsequently, the instantaneous airflow into the cylinder. The IAS exists as just one of many devices that the PCRL uses to control the dynamic boundary conditions of its SCE transient test system to make it “think” and operate as though it were part of a Multi-Cylinder Engine (MCE) test system. The model described in this paper will be used to design a second generation of this device that utilizes both continuously and discretely actuating valves working in parallel.
Technical Paper

An Analysis on Time Scale Separation for Engine Simulations with Detailed Chemistry

2011-09-11
2011-24-0028
The simulation of combustion chemistry in internal combustion engines is challenging due to the need to include detailed reaction mechanisms to describe the engine physics. Computational times needed for coupling full chemistry to CFD simulations are still too computationally demanding, even when distributed computer systems are exploited. For these reasons the present paper proposes a time scale separation approach for the integration of the chemistry differential equations and applies it in an engine CFD code. The time scale separation is achieved through the estimation of a characteristic time for each of the species and the introduction of a sampling timestep, wherein the chemistry is subcycled during the overall integration. This allows explicit integration of the system to be carried out, and the step size is governed by tolerance requirements.
Journal Article

Effect of Mesh Structure in the KIVA-4 Code with a Less Mesh Dependent Spray Model for DI Diesel Engine Simulations

2009-06-15
2009-01-1937
Two different types of mesh used for diesel combustion with the KIVA-4 code are compared. One is a well established conventional KIVA-3 type polar mesh. The other is a non-polar mesh with uniform size throughout the piston bowl so as to reduce the number of cells and to improve the quality of the cell shapes around the cylinder axis which can contain many fuel droplets that affect prediction accuracy and the computational time. This mesh is specialized for the KIVA-4 code which employs an unstructured mesh. To prevent dramatic changes in spray penetration caused by the difference in cell size between the two types of mesh, a recently developed spray model which reduces mesh dependency of the droplet behavior has been implemented. For the ignition and combustion models, the Shell model and characteristic time combustion (CTC) model are employed.
Technical Paper

Integration of a Continuous Multi-Component Fuel Evaporation Model with an Improved G-Equation Combustion and Detailed Chemical Kinetics Model with Application to GDI Engines

2009-04-20
2009-01-0722
A continuous multi-component fuel evaporation model has been integrated with an improved G-equation combustion and detailed chemical kinetics model. The integrated code has been successfully used to simulate a gasoline direct injection engine. In the multi-component fuel model, the theory of continuous thermodynamics is used to model the properties and composition of multi-component fuels such as gasoline. In the improved G-equation combustion model a flamelet approach based on the G-equation is used that considers multi-component fuel effects. To precisely calculate the local and instantaneous residual which has a great effect on the laminar flame speed, a “transport equation residual” model is used. A Damkohler number criterion is used to determine the combustion mode in flame containing cells.
Technical Paper

Operating a Heavy-Duty Direct-Injection Compression-Ignition Engine with Gasoline for Low Emissions

2009-04-20
2009-01-1442
A study of partially premixed combustion (PPC) with non-oxygenated 91 pump octane number1 (PON) commercially available gasoline was performed using a heavy-duty (HD) compression-ignition (CI) 2.44 l Caterpillar 3401E single-cylinder oil test engine (SCOTE). The experimental conditions selected were a net indicated mean effective pressure (IMEP) of 11.5 bar, an engine speed of 1300 rev/min, an intake temperature of 40°C with intake and exhaust pressures of 200 and 207 kPa, respectively. The baseline case for all studies presented had 0% exhaust gas recirculation (EGR), used a dual injection strategy a -137 deg ATDC pilot SOI and a -6 deg ATDC main start-of-injection (SOI) timing with a 30/70% pilot/main fuel split for a total of 5.3 kg/h fueling (equating to approximately 50% load). Combustion and emissions characteristics were explored relative to the baseline case by sweeping main and pilot SOI timings, injection split fuel percentage, intake pressure, load and EGR levels.
Journal Article

High Resolution Scalar Dissipation Measurements in an IC Engine

2009-04-20
2009-01-0662
The ability to make fully resolved turbulent scalar field measurements has been demonstrated in an internal combustion engine using one-dimensional fluorobenzene fluorescence measurements. Data were acquired during the intake stroke in a motored engine that had been modified such that each intake valve was fed independently, and one of the two intake streams was seeded with the fluorescent tracer. The scalar energy spectra displayed a significant inertial subrange that had a −5/3 wavenumber power dependence. The scalar dissipation spectra were found to extend in the high-wavenumber regime, to where the magnitude was more than two decades below the peak value, which indicates that for all practical purposes the measurements faithfully represent all of the scalar dissipation in the flow.
X