Refine Your Search

Topic

Search Results

Viewing 1 to 12 of 12
Technical Paper

Submerged Electrical Discharges for Water Decontamination and Disinfection

2007-07-09
2007-01-3175
A modular and scalable Dense Medium Plasma Water Purification Reactor was developed, which uses atmospheric-pressure electrical discharges under water to generate highly reactive species to break down organic contaminants and microorganisms. Key benefits of this novel technology include: (i) extremely high efficiency in both decontamination and disinfection; (ii) operating continuously at ambient temperature and pressure; (iii) reducing demands on the containment vessel; and (iv) requiring no consumables. This plasma based technology was developed to replace the catalytic reactor being used in the planned International Space Station Water Processor Assembly.
Technical Paper

Results of Plasma-Generated Hydrophilic and Antimicrobial Surfaces for Fluid Management Applications

2007-07-09
2007-01-3139
Humidity control within confined spaces is of great importance for existing NASA environmental control systems and Exploration applications. The Engineered Multifunction Surfaces (MFS) developed in this STTR Phase II form the foundation for a modular and scalable Distributed Humidity Control System (DHCS) while minimizing power, size and mass requirements. Key innovations of the MFS-based DHCS include passive humidity collection, control, and phase separation without moving parts, durable surface properties without particulate generation and accumulation, and the ability to scale up, or network in a distributed manner, a compact, modular device for Exploration applications including space suits, CEV, Rovers, Small and Transit Habitats and Large Habitats.
Technical Paper

Investigation of Platinum and Cerium from Use of a FBC

2006-04-03
2006-01-1517
Fuel-borne catalysts (FBC) have demonstrated efficacy as an important strategy for integrated diesel emission control. The research summarized herein provides new methodologies for the characterization of engine-out speciated emissions. These analytical tools provide new insights on the mode of action and chemical forms of metal emissions arising from use of a platinum and cerium based commercial FBC, both with and without a catalyzed diesel particulate filter. Characterization efforts addressed metal solubility (water, methanol and dichloromethane) and particle size and charge of the target species in the water and solvent extracts. Platinum and cerium species were quantified using state-of-the-art high resolution plasma mass spectrometry. Liquid-chromatography-triple quad mass spectrometry techniques were developed to quantify potential parent Pt-FBC in the PM extracts. Speciation was examined for emissions from cold and warm engine cycles collected from an engine dynamometer.
Technical Paper

Adapting Farm Equipment for Workers with Disabilities

2004-10-26
2004-01-2704
Farm workers experience a very high incidence of injuries leading to physical and cognitive (strokes, TBI) disabilities. Since 1991, the AgrAbility Project 2 and its staff have provided direct assistance and education to many U.S. farmers and farm workers. If farmers, ranchers or farm workers who become disabled continue to be employed in agriculture, often their agricultural operation must be modified and/or agricultural machinery must be modified or adaptive equipment purchased to meet their new needs. Some common tractor modifications include operator lifts, hand controls, added/modified steps and handrails, automated hitches, and custom seating. Some modifications are commercially available but others are done on an individual need basis. AgrAbility staff would welcome the opportunity to work closer with farm equipment manufacturers to create modifications that would make farming and ranching easier and safer for all.
Technical Paper

Simplified Engine Combustion Diagnostics Using “Synthetic” Variables

2000-03-06
2000-01-0364
This paper presents a diagnostics methodology that has applications to internal combustion engines as well as other dynamic devices. Included is an overview of the theoretical foundation of the approach, discussions on its application to internal combustion engine diagnostics, and experimental engine data showing the application of this methodology. Also included are the recent developments addressing issues of the effect of motoring compression and expansion work on crankshaft speed fluctuations and the resulting torque estimation. The methodology consists of a hard-wired nonlinear to linear transformation of engine variables that allow all subsequent diagnostics and control calculations to use linear mathematics, which significantly simplifies the size and complexity of the engine control and diagnostics strategy and code.
Technical Paper

Studying the Roles of Kinetics and Turbulence in the Simulation of Diesel Combustion by Means of an Extended Characteristic-Time-Model

1999-03-01
1999-01-1177
A study was performed that takes into account both turbulence and chemical kinetic effects in the numerical simulation of diesel engine combustion in order to better understand the importance of their respective roles at changing operating conditions. An approach was developed which combines the simplicity and low computational and storage requests of the laminar-and-turbulent characteristic-time model with a detailed combustion chemistry model based on well-known simplified mechanisms. Assuming appropriate simplifications such as steady state or equilibrium for most of the radicals and intermediate species, the kinetics of hydrocarbons can be described by means of three overall steps. This approach was integrated in the KIVA-II code. The concept was validated and applied to a single-cylinder, heavy-duty engine. The simulation covers a wide range of operating conditions.
Technical Paper

Performance Evaluation of the Commercial Plant Biotechnology Facility

1998-07-13
981666
The demand for highly flexible manipulation of plant growth generations, modification of specific plant processes, and genetically engineered crop varieties in a controlled environment has led to the development of a Commercial Plant Biotechnology Facility (CPBF). The CPBF is a quad-middeck locker playload to be mounted in the EXPRESS Rack that will be installed in the International Space Station (ISS). The CPBF integrates proven ASTROCULTURE” technologies, state-of-the-art control software, and fault tolerance and recovery technologies together to increase overall system efficiency, reliability, robustness, flexibility, and user friendliness. The CPBF provides a large plant growing volume for the support of commercial plant biotechnology studies and/or applications for long time plant research in a reduced gravity environment.
Technical Paper

Transient Spray Characteristics of a Direct-Injection Spark-Ignited Fuel Injector

1997-02-24
970629
This paper describes the transient spray characteristics of a high pressure, single fluid injector, intended for use in a direct-injection spark-ignited (DISI) engine. The injector was a single hole, pintle type injector and was electronically controlled. A variety of measurement diagnostics, including full-field imaging and line-of-sight diffraction based particle sizing were employed for spray characterization. Transient patternator measurements were also performed to obtain temporally resolved average mass flux distributions. Particle size and obscuration measurements were performed at three locations in the spray and at three injection pressures: 3.45 MPa (500 psi), 4.83 Mpa (700 psi), and 6.21 MPa (900 psi). Results of the spray imaging experiments indicated that the spray shapes varied with time after the start of injection and contained a leading mass, or slug along the center line of the spray.
Technical Paper

Control and Monitoring of Environmental Parameters in the ASTROCULTURE™ Flight Experiment

1995-07-01
951627
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test and integrate subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Flights on the Space Shuttle have demonstrated control of water movement through a particulate rooting material, growth chamber temperature and humidity control, LED lighting systems and control, recycling of recovered condensate, ethylene scrubbing, and carbon dioxide control. A complete plant growth unit was tested on STS-63 in February 1995, the first ASC flight in which plant biology experiments were conducted in microgravity. The methods and objectives used for control of environmental conditions in the ASC unit are described in this paper.
Technical Paper

Humidity and Temperature Control in the ASTROCULTURE™ Flight Experiment

1994-06-01
941282
The ASTROCULTURE™ (ASC) middeck flight experiment series was developed to test subsystems required to grow plants in reduced gravity, with the goal of developing a plant growth unit suitable for conducting quality biological research in microgravity. Previous Space Shuttle flights (STS-50 and STS-57) have successfully demonstrated the ability to control water movement through a particulate rooting matrix in microgravity and the ability of LED lighting systems to provide high levels of irradiance without excessive heat build-up in microgravity. The humidity and temperature control system used in the middeck flight unit is described in this paper. The system controls air flow and provides dehumidification, humidification, and condensate recovery for a plant growth chamber volume of 1450 cm3.
Technical Paper

A Matrix-Based Porous Tube Water and Nutrient Delivery System

1992-07-01
921390
A system was developed which provides nutrients and water to plants while maintaining good aeration at the roots and preventing water from escaping in reduced gravity. The nutrient solution is circulated through porous tubes under negative pressure and moves through the tube wall via capillary forces into the rooting matrix, establishing a non-saturated condition in the root zone. Tests using prototypes of the porous tube water and nutrient delivery system indicate that plant productivity in this system is equivalent to standard soil and solution culture growing procedures. The system has functioned successfully in short-term microgravity during parabolic flight tests and will be flown on the space shuttle. Plants are one of the components of a bioregenerative life support system required for long duration space missions.
Technical Paper

Future Developments in Forage Harvesting Machinery and Processing

1988-09-01
881289
Forage harvesting, processing and handling equipment research is currently underway which will improve commodity quality, produce “value -added” products from forages, reduce energy and labor requirements of the equipment and improve forage marketability. Technologies are described which could increase forage quality and value by removing it from the field sooner after it is mowed to minimize the risk of weather damage. Mechanisms and management strategies for reducing the labor and energy required for field processing and for improving the marketability of forages are also described.
X