Refine Your Search

Search Results

Viewing 1 to 2 of 2
Technical Paper

Simulation and Comparative Analysis of Permanent Magnet Motor for Electric Vehicle with Different Rotor Structures

As one of the key technologies for EVs and HEVs, the design of their motors has been researched extensively, and some novel rotors of permanent magnet motor were proposed in order to improve torque capability, including average torque and torque ripple. Rotor structure selection of drive motor for various electric vehicles has been one of the key issues in matching of electric vehicle power system. Three motors are analyzed for providing visible insights to the contribution of different rotor structures to the torque characteristics, efficiency and extended speed range. First, an iterative comparative analysis of torque-speed characteristics with different flux linkage, d-axis inductance and rotor saliency ratio is performed for demonstrating the design principle. Then, the three motors are optimized by a genetic algorithm (GA) for further improving the torque characteristics.
Journal Article

Application of Stochastic Model Predictive Control to Modeling Driver Steering Skills

With the development of the advanced driver assistance system and autonomous vehicle techniques, a precise description of the driver’s steering behavior with mathematical models has attracted a great attention. However, the driver’s steering maneuver demonstrates the stochastic characteristic due to a series of complex and uncertain factors, such as the weather, road, and driver’s physiological and psychological limits, generating negative effects on the performance of the vehicle or the driver assistance system. Hence, this paper explores the stochastic characteristic of driver’s steering behavior and a novel steering controller considering this stochastic characteristic is proposed based on stochastic model predictive control (SMPC). Firstly, a search algorithm is derived to describe the driver’s road preview behavior.