Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

In-Cylinder Mixture Formation Analysis with Spontaneous Raman Scattering Applied to a Mass-Production SI Engine

1997-02-24
970827
Mixture formation analysis in the combustion chamber of a slightly modified mass-production SI engine with port-fuel injection using nonintrusive laser measurement techniques is presented. Laser Raman scattering and planar laser-induced tracer fluorescence are employed to measure air-fuel ratio and residual gas content of the charge with and without spatial resolution. Single-cycle measurements as well as cycle-averaged measurements are performed. Engine operation parameters like load, speed, injection timing, spark timing, coolant temperature, and mean air-fuel ratio are changed to study whether the effects on mixture formation and engine performance can be resolved by the applied laser spectroscopic techniques. Mixture formation is also analyzed by measurement of the charge composition as a function of crank angle. Clear correlations of the charge composition data and engine operating conditions are seen.
Technical Paper

Quantitative In-Cylinder NO LIF Measurements with a KrF Excimer Laser Applied to a Mass-Production SI Engine Fueled with Isooctane and Regular Gasoline

1997-02-24
970824
Quantitative 1-D spatially-resolved NO LIF measurements in the combustion chamber of a mass-production SI engine with port-fuel injection using a tunable KrF excimer laser are presented. One of the main advantages of this approach is that KrF laser radiation at 248 nm is only slightly absorbed by the in-cylinder gases during engine combustion and therefore it allows measurements at all crank angles. Multispecies detection turned out to be crucial for this approach since it is possible to calculate the in-cylinder temperature from the detected Rayleigh scattering and the simultaneously acquired pressure traces. Additionally, it allows the monitoring of interfering emissions and spectroscopic effects like fluorescence trapping which turned out to take place. Excitation with 248 nm yields LIF emissions at shorter wavelengths than the laser wavelength (at 237 and 226 nm).
Technical Paper

Vapor/Liquid Visualization with Laser-Induced Exciplex Fluorescence in an SI-Engine for Different Fuel Injection Timings

1996-05-01
961122
Laser-induced exciplex fluorescence has been applied to the mixture formation process in the combustion chamber of an optically-accessible four-cylinder in-line spark-ignition engine in order to distinguish between liquid and vapor fuel distribution during the intake and compression stroke for different injection timings. The naphthalene/N,N,N′N′-tetramethyl p-phenylene diamine (TMPD) exciplex system excited at 308nm with a broadband XeCl excimer laser is used to obtain spectrally-separated, single-shot fluorescence images of the liquid or vapor phase of the fuel. For different timings of the fuel injector this technique is applied to obtain crank-angle-resolved images of the resulting mixture in the combustion chamber. The fluorescence light is detected with an intensified slow-scan CCD-camera equipped with appropriate filters.
X