Refine Your Search

Topic

Author

Affiliation

Search Results

Technical Paper

Computational method to determine the cooling airflow utilization ratio of passenger cars considering component deformation

2024-07-02
2024-01-2975
In order to improve the efficiency of passenger cars, developments focus on decreasing their aerodynamic drag, part of which is caused by cooling air. Thus, car manufacturers try to seal the cooling air path to prevent leakage flows. Nevertheless, gaps between the single components of the cooling air path widen due to the deformation of components under air load. For simulating the Cooling Airflow Utilization Ratio (CAUR), Computational Fluid Dynamics (CFD) simulations are used, which neglect component deformation. In this paper, a computational method aiming at sufficient gap resolution and determining the CAUR of passenger cars under the consideration of component deformation is developed. Therefore, a partitioned approach of Fluid Structure Interaction (FSI) simulations is used. The fluid field is simulated in OpenFOAM, whereas the structural simulations are conducted using Pam-Crash.
Technical Paper

Measurement of the Particle Distribution around the Tire of a Light Commercial Vehicle on Unpaved Roads

2024-03-13
2024-01-5032
Dust testing of vehicles on unpaved roads is crucial in the development process for automotive manufacturers. These tests aim to ensure the functionality of locking systems in dusty conditions, minimize dust concentration inside the vehicle, and enhance customer comfort by preventing dust accumulation on the car body. Additionally, deposition on safety-critical parts, such as windshields and sensors, can pose threats to driver vision and autonomous driving capabilities. Currently, dust tests are primarily conducted experimentally at proving grounds. In order to gain early insights and reduce the need for costly physical tests, numerical simulations are becoming a promising alternative. Although simulations of vehicle contamination by dry dust have been studied in the past, they have often lacked detailed models for tire dust resuspension. In addition, few publications address the specifics of dust deposition on vehicles, especially in areas such as door gaps and locks.
Technical Paper

Steer-by-Wire: Universal Calculation of Production-Dependent, Strongly Fluctuating Friction in Steering

2023-11-22
2023-01-5082
In steer-by-wire (SbW) vehicles, understanding the steering rack force is essential to replicate a realistic steering feel, allowing conclusions to be drawn about road surface conditions by the decoupled manual actuator. Since internal friction varies with each steering system manufactured and installed, these models differ greatly in accuracy. This paper presents a concept for continuously calculating fluctuating friction based on the internal steering variables to avoid additional and complex individual measurements. An SbW system offers the right approach by adjusting the driver’s desired steering angle and the required motor control. The underlying steering clearance and the Kalman filter are used to calculate the steering rack force. The validity of the proposed concept is shown in drive tests according to ISO 13674 and ISO 7401 to gauge high and low friction values in different speed ranges.
Technical Paper

Numerical Investigations of the Dust Deposition Behavior at Light Commercial Vehicles

2023-04-24
2023-01-5022
Dry dust testing of vehicles on unpaved dust roads plays a crucial role in the development process of automotive manufacturers. One of the central aspects of the test procedure is ensuring the functionality of locking systems in the case of dust ingress and keeping the dust below a certain concentration level inside the vehicle. Another aspect is the customer comfort because of dust deposited on the surface of the car body. This also poses a safety risk to customers when the dust settles on safety-critical parts such as windshields and obstructs the driver’s view. Dust deposition on sensors is also safety critical and is becoming more important because of the increasing amount of sensors for autonomous driving. Nowadays, dust tests are conducted experimentally at dust proving grounds. To gain early insights and avoid costly physical testing, numerical simulations are considered a promising approach. Simulations of vehicle contamination by dry dust have been studied in the past.
Technical Paper

Function-in-the-Loop Simulation of Electromechanical Steering Systems—Concept, Implementation, and Use Cases

2023-02-10
2023-01-5011
The accelerated processes in vehicle development require new technologies for function development and validation. With this motivation, Function-in-the-Loop (FiL) simulation was developed as a link between Software-in-the-Loop (SiL) and Hardware-in-the-Loop (HiL) simulation. The combination of real Electronic Control Unit (ECU) hardware and software in conjunction with virtual components is very well suited for function development and testing. This approach opens up new possibilities for mechatronic systems that would otherwise require special test benches. For this reason, an Electric Power Steering (EPS) was transferred to a virtual environment using FiL simulation. This enables a wide range of applications, from EPS testing to the development of connected driving functions on an integrated platform. Right from the early development phases, the technology can be used purposefully with short integration cycles.
Technical Paper

Experimental Investigation of Droplet Formation and Droplet Sizes Behind a Side Mirror

2022-12-27
2022-01-5107
The investigation of vehicle soiling by improvement of vehicle parts to optimize the surrounding airflow is of great importance not only because of the visibility through windows and at mirrors but also the functionality of different types of sensors (camera, lidar, radars, etc.) for the driver assistance systems and especially for autonomous driving vehicles has to be guaranteed. These investigations and corresponding developments ideally take place in the early vehicle development process since later changes are difficult to apply in the vehicle production process for many reasons. Vehicle soiling is divided into foreign soiling and self-soiling with respect to the source of the soiling water, e.g., direct rain impact, swirled (dirty) water of other road users and own rotating wheels. The investigations of the soiling behavior of vehicles were performed experimentally in a wind tunnel and street tests.
Technical Paper

Evaluation of Fast Detailed Kinetics Calibration Methodology for 3D CFD Simulations of Spray Combustion

2022-08-30
2022-01-1042
Meeting strict current and future emissions legislation necessitates development of computational tools capable of predicting the behaviour of combustion and emissions with an accuracy sufficient to make correct design decisions while keeping computational cost of the simulations amenable for large-scale design space exploration. While detailed kinetics modelling is increasingly seen as a necessity for accurate simulations, the computational cost can be often prohibitive, prompting interest in simplified approaches allowing fast simulation of reduced mechanisms at coarse grid resolutions appropriate for internal combustion engine simulations in design context. In this study we present a simplified Well-stirred Reactor (WSR) implementation coupled with 3D CFD Ricardo VECTIS solver.
Journal Article

Application of a Method for the Estimation of Transmissivity of Transparent Surfaces to Exterior Lighting Applications

2020-04-14
2020-01-1197
The paper derives a practical method for analysing transmission rates for light passing through transparent media like outer lenses of head lamps and tail lamps. It is shown that only two geometric parameters are needed to do the analysis, as are the angle of incidence measured to the surface normal and the surface normal itself. The surface is needed to be described mathematically - whether analytical (CAD) or discretised (FE or CFD), but no thickness is necessary. Two fields of application will be shown. The first one is the estimation of light performance or module position of head lamps in the early design process. A second one addresses the optimal time to doing outdoor weathering tests with respect to maximal impact of solar irradiation.
Technical Paper

Virtual Investigation of Real Fuels by Means of 3D-CFD Engine Simulations

2019-09-09
2019-24-0090
The reduction of both harmful emissions (CO, HC, NOx, etc.) and gases responsible for greenhouse effects (especially CO2) are mandatory aspects to be considered in the development process of any kind of propulsion concept. Focusing on ICEs, the main development topics are today not only the reduction of harmful emissions, increase of thermodynamic efficiency, etc. but also the decarbonization of fuels which offers the highest potential for the reduction of CO2 emissions. Accordingly, the development of future ICEs will be closely linked to the development of CO2 neutral fuels (e.g. biofuels and e-fuels) as they will be part of a common development process. This implies an increase in development complexity, which needs the support of engine simulations. In this work, the virtual modeling of real fuel behavior is addressed to improve current simulation capabilities in studying how a specific composition can affect the engine performance.
Technical Paper

Experimental Investigation of the Droplet Field of a Rotating Vehicle Tyre

2019-06-18
2019-01-5068
The consideration of vehicle soiling in the development process becomes ever more important because of the increasing customer demands on current vehicles and the increased use of camera and sensor systems due to autonomous driving. In the process of self-soiling, a soil-water mixture is whirled up by the rotation of the car’s own wheels and deposits on the vehicle surface. The validation of the soiling characteristics in vehicle development usually takes place in an experimental manner, but is increasingly supported by numerical simulations. The droplet field at the tyre has been investigated several times in the past. However, there are no published information regarding the physical background of the droplet formation process and the absolute droplet sizes considering the position at the tyre and the behaviour at different velocities.
Journal Article

In-Cylinder LIF Imaging, IR-Absorption Point Measurements, and a CFD Simulation to Evaluate Mixture Formation in a CNG-Fueled Engine

2018-04-03
2018-01-0633
Two optical techniques were developed and combined with a CFD simulation to obtain spatio-temporally resolved information on air/fuel mixing in the cylinder of a methane-fueled, fired, optically accessible engine. Laser-induced fluorescence (LIF) of anisole (methoxybenzene), vaporized in trace amounts into the gaseous fuel upstream of the injector, was captured by a two-camera system, providing one instantaneous image of the air/fuel ratio per cycle. Broadband infrared (IR) absorption by the methane fuel itself was measured in a small probe volume via a spark-plug integrated sensor, yielding time-resolved quasi-point information at kHz-rates. The simulation was based on the Reynolds-averaged Navier-Stokes (RANS) approach with the two-equation k-epsilon turbulence model in a finite volume discretization scheme and included the port-fuel injection event. Commercial CFD software was used to perform engine simulations close to the experimental conditions.
Journal Article

The Thermodynamics of Exhaust Gas Condensation

2017-06-29
2017-01-9281
Water vapor is, aside from carbon dioxide, the major fossil fuel combustion by-product. Depending on its concentration in the exhaust gas mixture as well as on the exhaust gas pressure, its condensation temperature can be derived. For typical gasoline engine stoichiometric operating conditions, the water vapor dew point lies at about 53 °C. The exhaust gas mixture does however contain some pollutants coming from the fuel, engine oil, and charge air, which can react with the water vapor and affect the condensation process. For instance, sulfur trioxide present in the exhaust, reacts with water vapor forming sulfuric acid. This acid builds a binary system with water vapor, which presents a dew point often above 100 °C. Exhaust composition after leaving the combustion chamber strongly depends on fuel type, engine concept and operation point. Furthermore, the exhaust undergoes several chemical after treatments.
Journal Article

Analysis of Cycle-to-Cycle Variations of the Mixing Process in a Direct Injection Spark Ignition Engine Using Scale-Resolving Simulations

2016-11-16
2016-01-9048
Since the mechanisms leading to cyclic combustion variabilities in direct injection gasoline engines are still poorly understood, advanced computational studies are necessary to be able to predict, analyze and optimize the complete engine process from aerodynamics to mixing, ignition, combustion and heat transfer. In this work the Scale-Adaptive Simulation (SAS) turbulence model is used in combination with a parameterized lagrangian spray model for the purpose of predicting transient in-cylinder cold flow, injection and mixture formation in a gasoline engine. An existing CFD model based on FLUENT v15.0 [1] has been extended with a spray description using the FLUENT Discrete Phase Model (DPM). This article will first discuss the validation of the in-cylinder cold flow model using experimental data measured within an optically accessible engine by High Speed Particle Image Velocimetry (HS-PIV).
Technical Paper

Application of the Adjoint Method for Vehicle Aerodynamic Optimization

2016-04-05
2016-01-1615
The aerodynamic optimization of an AUDI Q5 vehicle is presented using the continuous adjoint approach within the OpenFOAM framework. All calculations are performed on an unstructured automatically generated mesh. The primal flow, which serves as input for the adjoint method, is calculated using the standard CFD process at AUDI. It is based on DES calculations using a Spalart-Allmaras turbulence model. The transient results of the primal solution are time averaged and fed to a stationary adjoint solver using a frozen turbulence assumption. From the adjoint model, drag sensitivity maps are computed and measures for drag reduction are derived. The predicted measures are compared to CFD simulations and to wind tunnel experiments at 1:4 model scale. In this context, general challenges, such as convergence and accuracy of the adjoint method are discussed and best practice guidelines are demonstrated.
Technical Paper

Precise Dummy Head Trajectories in Crash Tests based on Fusion of Optical and Electrical Data: Influence of Sensor Errors and Initial Values

2015-04-14
2015-01-1442
Precise three-dimensional dummy head trajectories during crash tests are very important for vehicle safety development. To determine precise trajectories with a standard deviation of approximately 5 millimeters, three-dimensional video analysis is an approved method. Therefore the tracked body is to be seen on at least two cameras during the whole crash term, which is often not given (e.g. head dips into the airbag). This non-continuity problem of video analysis is surmounted by numerical integration of differential un-interrupted electrical rotation and acceleration sensor signals mounted into the tracked body. Problems of this approach are unknown sensor calibration errors and unknown initial conditions, which result in trajectory deviations above 10 centimeters.
Technical Paper

Experimental Investigation of the Primary Spray Development of GDI Injectors for Different Nozzle Geometries

2015-04-14
2015-01-0911
The optimization of the mixture formation represents great potential to decrease fuel consumption and emissions of spark-ignition engines. The injector and the nozzle are of major importance in this concern. In order to adjust the nozzle geometry according to the requirements an understanding of the physical transactions in the fuel spray is essential. In particular, the primary spray break-up is still described inadequately due to the difficult accessibility with optical measuring instruments. This paper presents a methodology for the characterization of the nozzle-near spray development, which substantially influences the entire spray shape. Single hole injectors of the gasoline direct injection (GDI) with different nozzle hole geometries have been investigated in a high pressure chamber by using the MIE scattering technique. To examine the spray very close to the nozzle exit a long-distance microscope in combination with a Nd:YAG-laser was used.
Journal Article

Development and Demonstration of LNT+SCR System for Passenger Car Diesel Applications

2014-04-01
2014-01-1537
The regulations for mobile applications will become stricter in Euro 6 and further emission levels and require the use of active aftertreatment methods for NOX and particulate matter. SCR and LNT have been both used commercially for mobile NOX removal. An alternative system is based on the combination of these two technologies. Developments of catalysts and whole systems as well as final vehicle demonstrations are discussed in this study. The small and full-size catalyst development experiments resulted in PtRh/LNT with optimized noble metal loadings and Cu-SCR catalyst having a high durability and ammonia adsorption capacity. For this study, an aftertreatment system consisting of LNT plus exhaust bypass, passive SCR and engine independent reductant supply by on-board exhaust fuel reforming was developed and investigated. The concept definition considers NOX conversion, CO2 drawback and system complexity.
Book

Integrated Automotive Safety Handbook

2013-10-08
Even though a number of developed countries enjoy a high level of vehicle safety, more than 1.2 million fatalities still occur each year on roadways worldwide. There remains a need to continue improving vehicle and road safety. New technologies in sensors and electronic control units, and the growing knowledge of car-to-car and car-to-infrastructure technologies have led to a fusion of the previously separated areas of accident avoidance (popularly known as active safety) and mitigation of injuries (popularly known as passive safety) into the newer concept of integrated vehicle safety. This new approach represents a further step toward lowering accident rates. This book, written by two of the foremost automotive engineering safety experts, takes a unique and comprehensive approach to describing all areas of vehicle safety: accident avoidance, pre-crash, mitigation of injuries, and post-crash technologies, providing a solutions-based perspective of integrated vehicle safety.
Technical Paper

Multi-Objective Adjoint Optimization of Intake Port Geometry

2012-04-16
2012-01-0905
Meeting the stringent efficiency demands of next generation direct injection engines requires not only optimization of the injection system and combustion chamber, but also an optimal in-cylinder swirling charge flow. This charge motion is largely determined by the shape of the intake port arm geometry and the valve position. In this paper, we outline an extensible methodology implemented in OPENFOAM® for multi-objective geometry optimization based on the continuous adjoint. The adjoint method has a large advantage over traditional optimization approaches in that its cost is not dependent upon the number of parameters being optimized. This characteristic can be used to treat every cell in the computational domain as a tunable parameter - effectively switching cells "on" or "off" depending on whether this action will help improve the objectives.
Technical Paper

Gasoline HCCI/CAI on a Four-Cylinder Test Bench and Vehicle Engine - Results and Conclusions for the Next Investigation Steps

2010-05-05
2010-01-1488
Internal combustion engines with lean homogeneous charge and auto-ignition combustion of gasoline fuels have the capability to significantly reduce fuel consumption and realize ultra-low engine-out NOx emissions. Group research of Volkswagen AG has therefore defined the Gasoline Compression Ignition combustion (GCI®) concept. A detailed investigation of this novel combustion process has been carried out on test bench engines and test vehicles by group research of Volkswagen AG and IAV GmbH Gifhorn. Experimental results confirm the theoretically expected potential for improved efficiency and emissions behavior. Volkswagen AG and IAV GmbH will utilize a highly flexible externally supercharged variable valve train (VVT) engine for future investigations to extend the understanding of gas exchange and EGR strategy as well as the boost demands of gasoline auto-ignition combustion processes.
X