Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

A Method to Evaluate the Compression Ratio in IC Engines with Porous Thermal Barrier Coatings

2018-09-10
2018-01-1778
The compression ratio is an important engine design parameter. It determines to a large extend engine properties like the achievable efficiency, the heat losses from the combustion chamber and the exhaust losses. The same properties are affected by insulation of the combustion chamber. It is therefore especially important to know the compression ratio when doing experiments with thermal barrier coatings (TBC). In case of porous TBCs, the standard methods to measure the compression ratio can give wrong results. When measuring the compression ratio by volume, using a liquid, it is uncertain if the liquid fills the total porous volume of the coating. And for a thermodynamic compression ratio estimation, a model for the heat losses is needed, which is not available when doing experiments with insulation. The subject of this paper is the evaluation of an alternative method to assess the compression ratio.
Technical Paper

Galvanically Induced Atmospheric Corrosion on Magnesium Alloys: A Designed Experiment Evaluated by Extreme Value Statistics and Conventional Techniques

1997-02-24
970328
Galvanic corrosion of high purity die cast magnesium alloys AM50 and AZ91 was examined in accelerated atmospheric corrosion testing according to Volvo STD 1027,1375 for 6 weeks involving cycling of the relative humidity between 90% and 45% in combination with intermittent immersion in one of two NaCl-solutions (0.3% or 1.0%). The exposures were performed at two different CO2 levels; 0.01% and 0.3%. The initial general corrosion rate of the AM50 alloy is 50-100% higher than that of AZ91 depending on surface preparation. The corrosion weight loss of both materials depends linearly on salt load in the investigated range. CO2 has a moderate accelerating effect, being higher with decreased salt load. Extreme value analysis was used to evaluate the deepest pit distribution around the perimeter of mounted bolts in panels of AZ91 and AM50. Quite contrary to the general corrosion results, AZ91 showed 30% deeper pits than AM50.
Technical Paper

Stone Impact Damage to Automotive Paint Finishes: Impact Induced Corrosion in Painted Pre-Coated Sheet Steels

1993-10-01
932332
Electrochemical Impedance Spectroscopy (EIS) and Thermal Wave Imaging (TWI) are complementary techniques which can be used to detect and estimate Impact Induced Corrosion (IIC) at the metal-polymer interface. This paper describes the use of the above techniques to detect Impact Induced Corrosion in a variety of pre-coated and painted sheet steels. It has been possible to show, that IIC is a threshold phenomenon and depends on the type of galvanized coating. Evaluation of IIC, using a high performance indoor accelerated test and preliminary data from the proving grounds are presented in this paper.
X