Refine Your Search

Topic

Search Results

Viewing 1 to 11 of 11
Technical Paper

Organic Evolution of Development Organizations - An Experience Report

2016-04-05
2016-01-0028
In areas such as Active Safety, new technologies, designs (e.g. AUTOSAR) and methods are introduced at a rapid pace. To address the new demands, and also requirements on Functional Safety imposed by ISO 26262, the support for engineering methods, including tools and data management, needs to evolve as well. Generic and file-based data management tools, like spreadsheet tools, are popular in the industry due to their flexibility and legacy in the industry but provide poor control and traceability, while rigid and special-purpose tools provide structure and control of data but with limited evolvability. As organizations become agile, the need for flexible data management increases. Since products become more complex and developed in larger and distributed teams, the need for more unified, controlled, and consistent data increases.
Technical Paper

Severe Frontal Collisions with Partial Overlap - Two Decades of Car Safety Development

2013-04-08
2013-01-0759
Frontal Severe Partial Overlap Collisions (SPOC) also called small overlap crashes pose special challenges with respect to structural design as well as occupant protection. In the early 1990s, the SPOC test method was developed addressing 20-40% overlap against a fixed rigid barrier with initial velocities up to 65 km/h. The knowledge gained has been used in the design of Volvo vehicles since then. Important design principles include front side members orientated along the wheel envelopes together with a strong support structure utilizing a space frame principle with beams loaded mainly in tension and compression. This novel setup was first introduced in the 850-model in 1991 and has been refined and patented (2001) in later Volvo front structures. Among the design principles are multiple front side members on each side, helping energy absorption efficiency and robustness.
Technical Paper

Testing and Verification of Adaptive Cruise Control and Collision Warning with Brake Support by Using HIL Simulations

2008-04-14
2008-01-0728
This paper presents how hardware in the loop (HIL) simulations have been used for testing during the development of the adaptive cruise control (ACC) and collision warning with brake support (CWBS) functions implemented in the Volvo S80. Both the brake system controller and the controller where the ACC and CWBS functions were implemented were tested. The HIL simulator was used for automated batch simulations in which different controller software releases were analyzed from both system, fail-safe and functional performance perspectives. This paper presents the challenges and the benefits of using HIL simulations when developing distributed active safety functions. Some specific simulation results are analyzed and discussed. The conclusion shows that although it is difficult and time-consuming to develop a complete HIL simulation environment for active safety functions such as ACC and CWBS, the benefits justify the investment.
Technical Paper

A Method for Estimating the Benefit of Autonomous Braking Systems Using Traffic Accident Data

2006-04-03
2006-01-0473
One way of avoiding crashes or mitigating the consequences of a crash is to apply an autonomous braking system. Quantifying the benefit of such a system in terms of injury reduction is a challenge. At the same time it is a fundamental input into the vehicle development process. This paper describes a method to estimate the effectiveness of reducing speed prior to impact. A holistic view of quantifying the benefit is presented, based on existing real life crash data and basic dynamic theories. It involves a systematic and new way of examining accident data in order to extract information concerning pre-crash situations. One problem area when implementing collision mitigation systems is being able to achieve sufficient target discrimination. The results from the case study highlight frontal impact situations from real world accident data that have the greatest potential in terms of improving accident outcome.
Technical Paper

The Door Mounted Inflatable Curtain

2006-04-03
2006-01-1437
It has been shown that Inflatable Curtains have the potential to reduce head injuries in side impacts and the system has accordingly been introduced on a growing number of car models. There is also a potential benefit in rollover situations. This paper only consider performance in situations with belted occupants. To date, it has not been possible to implement an Inflatable Curtain in convertible vehicles because they lack a roof. The challenge of the Door Mounted Inflatable Curtain (DMIC) has been to overcome the lack of support and fixation possibilities offered by a roof. This paper includes a description of the DMIC and how it was integrated into the vehicle structure. The paper will also show how to create the space and support needed to utilize the internal stiffness and make it possible to fill the bag in time. The impact attenuation and ejection protection functions of the DMIC will be demonstrated.
Technical Paper

Development of a Haptic Intervention System for Unintended Lane Departure

2003-03-03
2003-01-0282
Many accidents are road departures because of the drivers' lack of attention. This is in many cases due to distraction, drowsiness or intoxication. The Haptic Lane Departure Warning System described here is intended as an active safety system, thus aiming at decreasing the amount of unwanted lane departures. The challenge in the development of such kinds of functions lies in the determination of dangerous situations and the design of appropriate warning/intervention strategies. The system is intended to go unnoticed with the driver and intervenes only in instances where the driver mismanages steering control. Unlike systems which issue an audible sound, the type of warning is a tactile feedback via the steering wheel. This torque is designed in a way that it communicates to the driver the appropriate steering wheel angle required in order to come back in lane.
Technical Paper

Decision Making for Collision Avoidance Systems

2002-03-04
2002-01-0403
Driver errors cause a majority of all car accidents. Forward collision avoidance systems aim at avoiding, or at least mitigating, host vehicle frontal collisions, of which rear-end collisions are one of the most common. This is done by either warning the driver or braking or steering away, respectively, where each action requires its own considerations and design. We here focus on forward collision by braking, and present a general method for calculating the risk for collision. A brake maneuver is activated to mitigate the accident when the probability of collision is one, taking all driver actions into considerations. We describe results from a simulation study using a large number of scenarios, created from extensive accident statistics. We also show some results from an implementation of a forward collision avoidance system in a Volvo V70. The system has been tested in real traffic, and in collision scenarios (with an inflatable car) showing promising results.
Technical Paper

Multi-material Approach with Integrated Joining Technologies in the New Volvo S80

1999-09-28
1999-01-3147
In May 1998 Volvo launched its most exclusive car model so far, the Volvo S80, which is aimed to compete with upper luxury segment products. The car is produced in the new production facility in the Torslanda plant in Sweden. Among the more highlighted features were a transversely mounted in-line six cylinder engine with a specially designed gearbox, electronic multiplex technology with 18 computers in the network, and safety features like stability and traction control (STC), front seats with integrated antiwhiplash system (WHIPS) and inflatable curtain (IC) for improved side impact protection. To fulfill the product's high demands on safety, quality and environmental care, the design, materials selection and assembly of the car body with high precision had to be very carefully engineered. As in previous product-/process development a holistic and concurrent engineering approach was necessary.
Technical Paper

European Side-markers Effect on Traffic Safety

1999-03-01
1999-01-0091
In 1993 new European legislation regarding side-markers for passenger cars became effective. Volvo requested the TNO-Human Factors Research Institute (HFRI) to investigate the possible safety benefit of this European side-markers configuration. A test panel at TNO- HFRI was used to determine the difference in response time and detection error of drivers, confronted with slides of vehicles with and without the mentioned new vehicle side-marker configuration in several visibility conditions, crossing illumination and different vehicle approach angles. The investigation showed a significant faster vehicle recognition with less detection errors in case the approaching car was equipped with the bright amber side-markers. This improved vehicle conspicuity can be a benefit in crash avoidance, especially when the driver approaches a crossing with complex light environment and reduced visibility.
Technical Paper

The Inflatable Curtain (IC) - A New Head Protection System in Side Impacts

1998-05-31
986180
Car accident investigations have shown that the head, the chest and the abdomen are the three most vulnerable body regions in side impacts, when serious-to-fatal (MAIS 3-6) injuries are considered. Injuries are much more common to occupants seated on the struck side than to those on the non-struck side. The development of new side impact protection systems has therefore been focused on struck side occupants. The first airbag system for side impact protection, jointly developed by Volvo and Autoliv, was introduced on the market in 1994. The SIPS bag is seat-mounted and protects mainly the chest and the abdomen, and also to some extent the head, since the head's lateral relative displacement is reduced by the side airbag, thereby keeping the head inside the car's outer profile. However, if an external object is exposed in the head area, for example in a truck-to-car side impact or in a single car collision into a pole or a tree, there is a need for an additional head protection device.
Technical Paper

Simulation of Vehicle Pitch in Sled Testing

1985-02-25
850098
In HYGE sled simulations of 35 mph barrier crashes with the Volvo 760 dummy kinematics and injury criteria have been different from what can be observed in barrier crashes One of the major differences between sled testing and barrier crashes is the car pitch in the barrier crashes. In order to improve the sled testing a method to simulate pitch on the sled was developed. Dummy kinematics and injury criteria from sled tests with pitch simulation have proved to be in good agreement with results from barrier crashes. The paper will give a more detailed description of vehicle pitch, the sled pitch arrangement and a comparison of dummy kinematics and injury criteria from barrier crashes and sled testing with and without pitch displacement.
X