Refine Your Search

Topic

Author

Search Results

Technical Paper

Hybrid Electric Vehicle Architecture Selection for EcoCAR 3 Competition

2015-04-14
2015-01-1228
This paper presents the work performed by the Wayne State University (WSU) EcoCAR 3 student design competition team in its preparation for the hybrid electric vehicle architecture selection process. This process is recognized as one of the most pivotal steps in the EcoCAR 3 competition. With a key lesson learned from participation in EcoCAR 2 on “truly learning how to learn,” the team held additional training sessions on architecture selection tools and exercises with the goal of improving both fundamental and procedural skills. The work conducted represents a combination of the architecture feasibility study and final selection process in terms of content and procedure, respectively. At the end of this study the team was able to identify four potentially viable hybrid powertrain architectures, and thoroughly analyze the performance and packaging feasibility of various component options.
Technical Paper

Experimental Validation of Pediatric Thorax Finite Element Model under Dynamic Loading Condition and Analysis of Injury

2013-04-08
2013-01-0456
Previously, a 10-year-old (YO) pediatric thorax finite element model (FEM) was developed and verified against child chest stiffness data measured from clinical cardiopulmonary resuscitation (CPR). However, the CPR experiments were performed at relatively low speeds, with a maximum loading rate of 250 mm/s. Studies showed that the biomechanical responses of human thorax exhibited rate sensitive characteristics. As such, the studies of dynamic responses of the pediatric thorax FEM are needed. Experimental pediatric cadaver data in frontal pendulum impacts and diagonal belt dynamic loading tests were used for dynamic validation. Thoracic force-deflection curves between test and simulation were compared. Strains predicted by the FEM and the injuries observed in the cadaver tests were also compared for injury assessment and analysis. This study helped to further improve the 10 YO pediatric thorax FEM.
Technical Paper

Injury Predictors for Traumatic Axonal Injury in a Rodent Head Impact Acceleration Model

2011-11-07
2011-22-0002
A modified Marmarou impact acceleration injury model was developed to study the kinematics of the rat head to quantify traumatic axonal injury (TAI) in the corpus callosum (CC) and brainstem pyramidal tract (Py), to determine injury predictors and to establish injury thresholds for severe TAI. Thirty-one anesthetized male Sprague-Dawley rats (392 ± 13 grams) were impacted using a modified impact acceleration injury device from 2.25 m and 1.25 m heights. Beta-amyloid precursor protein (β-APP) immunocytochemistry was used to assess and quantify axonal changes in CC and Py. Over 600 injury maps in CC and Py were constructed in the 31 impacted rats. TAI distribution along the rostro-caudal direction in CC and Py was determined. Linear and angular responses of the rat head were monitored and measured in vivo with an attached accelerometer and angular rate sensor, and were correlated to TAI data.
Technical Paper

Characterization of Internal flow and Spray of Multihole DI Gasoline Spray using X-ray Imaging and CFD

2011-08-30
2011-01-1881
Multi-hole DI injectors are being adopted in the advanced downsized DISI ICE powertrain in the automotive industry worldwide because of their robustness and cost-performance. Although their injector design and spray resembles those of DI diesel injectors, there are many basic but distinct differences due to different injection pressure and fuel properties, the sac design, lower L/D aspect ratios in the nozzle hole, closer spray-to-spray angle and hense interactions. This paper used Phase-Contrast X ray techniques to visualize the spray near a 3-hole DI gasoline research model injector exit and compared to the visible light visualization and the internal flow predictions using with multi-dimensional multi-phase CFD simulations. The results show that strong interactions of the vortex strings, cavitation, and turbulence in and near the nozzles make the multi-phase turbulent flow very complicated and dominate the near nozzle breakup mechanisms quite unlike those of diesel injections.
Technical Paper

Development of an FE Model of the Rat Head Subjected to Air Shock Loading

2010-11-03
2010-22-0011
As early as the 1950's, Gurdjian and colleagues (Gurdjian et al., 1955) observed that brain injuries could occur by direct pressure loading without any global head accelerations. This pressure-induced injury mechanism was "forgotten" for some time and is being rekindled due to the many mild traumatic brain injuries attributed to blast overpressure. The aim of the current study was to develop a finite element (FE) model to predict the biomechanical response of rat brain under a shock tube environment. The rat head model, including more than 530,000 hexahedral elements with a typical element size of 100 to 300 microns was developed based on a previous rat brain model for simulating a blunt controlled cortical impact. An FE model, which represents gas flow in a 0.305-m diameter shock tube, was formulated to provide input (incident) blast overpressures to the rat model. It used an Eulerian approach and the predicted pressures were verified with experimental data.
Journal Article

Experimental Investigation of the Interaction of MultipleGDI Injections using Laser Diagnostics

2010-04-12
2010-01-0596
In present GDI engines, multiple injection strategies are often employed for engine cold start mixture formation. In the future, these strategies may also be used to control the combustion process, and to prevent misfiring or high emission levels. While the processes occurring during individual injections of GDI injectors have been investigated by a number of researchers, this paper concentrates on the interactions of multiple injection events. Even though multiple injection strategies are already applied in most GDI engines, the impact of the first injection event on the second injection event has not been analyzed in detail yet. Different optical measurement techniques are used in order to investigate the interaction of the two closely timed injection events, as well as the effect of dwell time and the in-cylinder conditions. The injector investigated is a GDI piezo injector with an outwardly opening needle.
Technical Paper

Near-Nozzle Structure of Diesel Sprays Affected by Internal Geometry of Injector Nozzle: Visualized by Single-Shot X-ray Imaging

2010-04-12
2010-01-0877
By taking advantage of high-intensity and high-brilliance x-ray beams available at the Advanced Photon Source (APS), ultrafast (150 ps) propagation-based phase-enhanced imaging was developed to visualize high-pressure high-speed diesel sprays in the optically dense near-nozzle region. The sub-ns temporal and μm spatial resolution allows us to capture the morphology of the high-speed fuel sprays traveling at 500 m/s with a negligible motion blur. Both quality and quantitative information about the spray feature can be readily obtained. In the experiment, two types of single-hole nozzles have been used, one with a hydroground orifice inlet and the other with a sharp one. Within 3 mm from the nozzle, the sprays from these nozzles behave differently, ranging from laminar flow with surface instability waves to turbulent flow. The sprays are correlated with the nozzle internal geometry, which provides practical information for both nozzle design and supporting numerical simulation models.
Technical Paper

Effects of B20 Fuel and Catalyst Entrance Section Length on the Performance of UREA SCR in a Light-Duty Diesel Engine

2010-04-12
2010-01-1173
The current study focused on the effects B20 fuel (20% soybean-based biodiesel) and SCR entrance shapes on a light-duty, high-speed, 2.8L common-rail 4-cylinder diesel engine, at different exhaust temperatures. The results indicate that B20 has less deNOX efficiency at low temperature than ULSD, and that N₂O emission need to be characterized as well as NH₃ slip. If a mixer and enough mixing length are used, longer divergence section does not improve the deNOX efficiency significantly under the speed ranges tested.
Technical Paper

Biomechanical Response of the Bovine Pia-Arachnoid Complex to Tensile Loading at Varying Strain Rates

2006-11-06
2006-22-0025
The pia-arachnoid complex (PAC) covering the brain plays an important role in the mechanical response of the brain due to impact or inertial loading. However, the mechanical properties of the pia-arachnoid complex and its influence on the overall response of the brain have not been well characterized. Consequently, finite element (FE) brain models have tended to oversimplify the response of the pia-arachnoid complex, possibly resulting in a loss of accuracy in the model predictions. The aim of this study was to determine, experimentally, the material properties of the pia-arachnoid complex under quasi-static and dynamic loading conditions. Specimens of the pia-arachnoid complex were obtained from the parietal and temporal regions of freshly slaughtered bovine subjects with the specimen orientation recorded. Single-stroke, uniaxial quasi-static and dynamic tensile experiments were performed at strain-rates of 0.05, 0.5, 5 and 100 s-1 (n = 10 for each strain rate group).
Technical Paper

Application of a Finite Element Model of the Brain to Study Traumatic Brain Injury Mechanisms in the Rat

2006-11-06
2006-22-0022
Complete validation of any finite element (FE) model of the human brain is very difficult due to the lack of adequate experimental data. However, more animal brain injury data, especially rat data, obtained under well-defined mechanical loading conditions, are available to advance the understanding of the mechanisms of traumatic brain injury. Unfortunately, internal response of the brain in these experimental studies could not be measured. The aim of this study was to develop a detailed FE model of the rat brain for the prediction of intracranial responses due to different impact scenarios. Model results were used to elucidate possible brain injury mechanisms. An FE model, consisting of more than 250,000 hexahedral elements with a typical element size of 100 to 300 microns, was developed to represent the brain of a rat. The model was first validated locally against peak brain deformation data obtained from nine unique dynamic cortical deformation (vacuum) tests.
Technical Paper

The Influence of Surrogate Blood Vessels on the Impact Response of a Physical Model of the Brain

2004-11-01
2004-22-0012
Cerebral blood vessels are an integral part of the brain and may play a role in the response of the brain to impact. The purpose of this study was to quantify the effects of surrogate vessels on the deformation patterns of a physical model of the brain under various impact conditions. Silicone gel and tubing were used as surrogates for brain tissue and blood vessels, respectively. Two aluminum cylinders representing a coronal section of the brain were constructed. One cylinder was filled with silicone gel only, and the other was filled with silicone gel and silicone tubing arranged in the radial direction in the peripheral region. An array of markers was embedded in the gel in both cylinders to facilitate strain calculation via high-speed video analysis. Both cylinders were simultaneously subjected to a combination of linear and angular acceleration using a two-segment pendulum.
Technical Paper

A tibial mid-shaft injury mechanism in frontal automotive crashes

2001-06-04
2001-06-0241
Lower extremity injuries in frontal automotive crashes usually occur with footwell intrusion where both the knee and foot are constrained. In order to identify factors associated with tibial shaft injury, a series of numerical simulations were conducted using a finite element model of the whole human body. These simulations demonstrated that tibial mid-shaft injuries in frontal crashes could be caused by an abrupt change in velocity and a high rate of footwell intrusion.
Technical Paper

Kinematics of Human Cadaver Cervical Spine During Low Speed Rear-End Impacts

2000-11-01
2000-01-SC13
The purposes of this study were to measure the relative linear and angular displacements of each pair of adjacent cervical vertebrae and to compute changes in distance between two adjacent facet joint landmarks during low posterior- anterior (+Gx) acceleration without significant hyperextension of the head. A total of twenty-six low speed rear-end impacts were conducted using six postmortem human specimens. Each cadaver was instrumented with two to three neck targets embedded in each cervical vertebra and nine accelerometers on the head. Sequential x-ray images were collected and analyzed. Two seatback orientations were studied. In the global coordinate system, the head, the cervical vertebrae, and the first or second thoracic vertebra (T1 or T2) were in extension during rear-end impacts. The head showed less extension in comparison with the cervical spine.
Technical Paper

Development of a Finite Element Model of the Human Shoulder

2000-11-01
2000-01-SC19
Previous studies have hypothesized that the shoulder may be used to absorb some impact energy and reduce chest injury due to side impacts. Before this hypothesis can be tested, a good understanding of the injury mechanisms and the kinematics of the shoulder is critical for occupant protection in side impact. However, existing crash dummies and numerical models are not designed to reproduce the kinematics and kinetics of the human shoulder. The purpose of this study was to develop a finite element model of the human shoulder in order to achieve a deeper understanding of the injury mechanisms and the kinematics of the shoulder in side impact. Basic anthropometric data of the human shoulder used to develop the skeletal and muscular portions of this model were taken from commercial data packages. The shoulder model included three bones (the humerus, scapula and clavicle) and major ligaments and muscles around the shoulder.
Technical Paper

Exploration of the Contribution of the Start/Stop Transients in HEV Operation and Emissions

2000-08-21
2000-01-3086
The effects of the start/stop (S/S) transients on the Hybrid Electric Vehicle (HEV) operation and emissions are explored in this study. The frequency with which the engine starts and stops during an urban driving cycle is estimated by using the NREL's Advanced Vehicle Simulator software (ADVISOR). Furthermore, several tests were conducted on single-cylinder and multi-cylinder direct injection diesel engines in order to measure the cycle-resolved mole fractions of the hydrocarbons and nitric oxide exhaust emissions under frequent start/stop mode of operation. The frictional losses in engine in its entirety as well as in its components are also determined. In addition, the dynamic behavior of different high pressure fuel injection systems are investigated under the start and stop mode of operation.
Technical Paper

Finite Element Simulation of Ankle/Foot Injury in Frontal Crashes

2000-03-06
2000-01-0156
Finite element models of human body segments have been developed in recent years. Numerical simulation could be helpful when understanding injury mechanisms and to make injury assessments. In the lower leg injury research in NISSAN, a finite element model of the human ankle/foot is under development. The mesh for the bony part was taken from the original model developed by Beaugonin et al., but was revised by adding soft tissue to reproduce realistic responses. Damping effect in a high speed contact was taken into account by modeling skin and fat in the sole of the foot. The plantar aponeurosis tendon was modeled by nonlinear bar elements connecting the phalanges to the calcaneus. The rigid body connection, which was defined at the toe in the original model for simplicity, was removed and the transverse ligaments were added instead in order to bind the metatarsals and the phalanges. These tendons and ligaments were expected to reproduce a realistic response in compression.
Technical Paper

Brain/Skull Relative Displacement Magnitude Due to Blunt Head Impact: New Experimental Data and Model

1999-10-10
99SC22
Relative motion between the brain and skull may explain many types of brain injury such as intracerebral hematomas due to bridging veins rupture [1] and cerebral contusions. However, no experimental methods have been developed to measure the magnitude of this motion. Consequently, relative motion between the brain and skull predicted by analytical tools has never been validated. In this study, radio opaque markers were placed in the skull and neutral density markers were placed in the brain in two vertical columns in the occipitoparietal and temporoparietal regions. A bi-planar, high-speed x-ray system was used to track the motion of these markers. Due to limitations in current technology to record the x-ray image on high-speed video cameras, only low- speed (﹤ 4m/s) impact data were available.
Technical Paper

Thoracic Injury Mechanisms and Biomechanical Responses in Lateral Velocity Pulse Impacts

1999-10-10
99SC04
The purpose of this study is to help understand the thoracic response and injury mechanisms in high-energy, limited-stroke, lateral velocity pulse impacts to the human chest wall. To impart such impacts, a linear impactor was developed which had a limited stroke and minimally decreased velocity during impact. The peak impact velocity was 5.6 ± 0.3 m/s. A series of BioSID and cadaver tests were conducted to measure biomechanical response and injury data. The conflicting effects of padding on increased deflection and decreased acceleration were demonstrated in tests with BioSID and cadavers. The results of tests conducted on six cadavers were used to test several proposed injury criteria for side impact. Linear regression was used to correlate each injury criterion to the number of rib fractures. This test methodology captured and supported a contrasting trend of increased chest deflection and decreased TTI when padding was introduced.
Technical Paper

Foot and Ankle Finite Element Modeling Using Ct-Scan Data

1999-10-10
99SC11
Although not life threatening in most cases, victims of lower extremity injuries frequently end up living with a poor quality of life. The implementations of airbag supplement restraint systems significantly reduce the incidence of head and chest injuries. However, the frequency of leg injuries remains high. Several finite element models of the foot and ankle have been developed to further the understanding of this injury mechanism. None of those models employed accurate geometry among various bony segments. The objective of this study is to develop a foot and ankle finite element model based on CT scan data so that joint geometry can be accurately represented. The model was validated against experimental data for several different configurations including typical car crash situations.
Technical Paper

Bending Strength of the Human Cadaveric Forearm Due to Lateral Loads

1999-10-10
99SC24
Ten pairs of thawed fresh-frozen human cadaveric lower arm specimens were subjected to lateral three-point bending. Either the radius or ulna were impacted with a 4.5 kg dropped weight at approximately 3 m/s or tested quasi-statically in a materials testing machine. Fracture occurred primarily near the loading site with an average dynamic peak load of 1370 N and average peak moment of 89 Nm. Differences between the radius and ulna were not significant. Static fracture load and moments were approximately 20% lower. Sectional and mineral properties of each specimen near the fracture sites were measured.
X