Refine Your Search

Search Results

Viewing 1 to 10 of 10
Technical Paper

Simultaneous In-Cylinder Surface Temperature Measurements with Thermocouple, Laser-induced Phosphorescence, and Dual Wavelength Infrared Diagnostic Techniques in an Optical Engine

2015-04-14
2015-01-1658
As engine efficiency targets continue to rise, additional improvements must consider reduction of heat transfer losses. The development of advanced heat transfer models and realistic boundary conditions for simulation based engine design both require accurate in-cylinder wall temperature measurements. A novel dual wavelength infrared diagnostic has been developed to measure in-cylinder surface temperatures with high temporal resolution. The diagnostic has the capability to measure low amplitude, high frequency temperature variations, such as those occurring during the gas exchange process. The dual wavelength ratio method has the benefit of correcting for background scattering reflections and the emission from the optical window itself. The assumption that background effects are relatively constant during an engine cycle is shown to be valid over a range of intake conditions during motoring.
Journal Article

An Unbiased Estimate of the Relative Crash Risk of Cell Phone Conversation while Driving an Automobile

2014-04-01
2014-01-0446
A key aim of research into cell phone tasks is to obtain an unbiased estimate of their relative risk (RR) for crashes. This paper re-examines five RR estimates of cell phone conversation in automobiles. The Toronto and Australian studies estimated an RR near 4, but used subjective estimates of driving and crash times. The OnStar, 100-Car, and a recent naturalistic study used objective measures of driving and crash times and estimated an RR near 1, not 4 - a major discrepancy. Analysis of data from GPS trip studies shows that people were in the car only 20% of the time on any given prior day at the same clock time they were in the car on a later day. Hence, the Toronto estimate of driving time during control windows must be reduced from 10 to 2 min.
Technical Paper

Frontal Impact Responsesof Generic Steel Front Bumper Crush Can Assemblies

2014-04-01
2014-01-0550
The present investigation details an experimental procedure for frontal impact responses of a generic steel front bumper crush can (FBCC) assembly subjected to a rigid full and 40% offset impact. There is a paucity of studies focusing on component level tests with FBCCs, and of those, speeds carried out are of slower velocities. Predominant studies in literature pertain to full vehicle testing. Component level studies have importance as vehicles aim to decrease weight. As materials, such as carbon fiber or aluminum, are applied to vehicle structures, computer aided models are required to evaluate performance. A novel component level test procedure is valuable to aid in CAE correlation. All the tests were conducted using a sled-on-sled testing method. Several high-speed cameras, an IR (Infrared) thermal camera, and a number of accelerometers were utilized to study impact performance of the FBCC samples.
Technical Paper

Weldability Prediction of AHSS Stackups Using Artificial Neural Network Models

2012-04-16
2012-01-0529
Typical automotive body structures use resistance spot welding for most joining purposes. New materials, such as Advanced High Strength Steels (AHSS) are increasingly used in the construction of automotive body structures to meet increasingly higher structural performance requirements while maintaining or reducing weight of the vehicle. One of the challenges for implementation of new AHSS materials is weldability assessment. Weld engineers and vehicle program teams spend significant efforts and resources in testing weldability of new sheet metal stack-ups. In this paper, we present a methodology to determine the weldability of sheet metal stack-ups using an Artificial Neural Network-based tool that learns from historical data. The paper concludes by reviewing weldability results predicted by using this tool and comparing with actual test results.
Journal Article

Efficient Approximate Methods for Predicting Behaviors of Steel Hat Sections Under Axial Impact Loading

2010-04-12
2010-01-1015
Hat sections made of steel are frequently encountered in automotive body structural components such as front rails. These components can absorb significant amount of impact energy during collisions thereby protecting occupants of vehicles from severe injury. In the initial phase of vehicle design, it will be prudent to incorporate the sectional details of such a component based on an engineering target such as peak load, mean load, energy absorption, or total crush, or a combination of these parameters. Such a goal can be accomplished if efficient and reliable data-based models are available for predicting the performance of a section of given geometry as alternatives to time-consuming and detailed engineering analysis typically based on the explicit finite element method.
Technical Paper

Ultrafast X-Ray Phase-Enhanced Microimaging for Visualizing Fuel Injection Process

2005-09-11
2005-24-093
Propagation-based and phase-enhanced x-ray imaging was developed as a unique metrology technique to visualize the internal structure of high-pressure fuel injection nozzles. We have visualized the microstructures inside 200-μm fuel injection nozzles in a 3-mm-thick steel housing using this novel technique. Furthermore, this new x-ray-based metrology technique has been used to directly study the highly transient needle motion in the nozzles in situ and in real-time, which is virtually impossible by any other means. The needle motion has been shown to have the most direct effect on the fuel jet structure and spray formation immediately outside of the nozzle. In addition, the spray cone-angle has been perfectly correlated with the numerically simulated fuel flow inside the nozzle due to the transient nature of the needle during the injection.
Technical Paper

Development of a New Bainitic Steel

2001-10-01
2001-01-3361
A high carbon, high silicon and high manganese steel containing about 1% carbon, 3.0% silicon and 2.0% manganese has been developed. This steel has been synthesized using the concepts from Austempered Ductile Cast Iron (ADI) technology. The influence of austempering process on the microstructure and the room temperature mechanical properties of this steel was investigated. The influence of microstructure on the plain strain fracture toughness of this new steel was also examined. Four batches of compact tension and cylindrical tensile samples were prepared from this steel as per ASTM standards E-399 and E-8 respectively. Two batches of specimens were processed by traditional quenching and tempering process while other two batches were austempered. The microstructures were characterized by X-ray diffraction and optical metallography.
Technical Paper

Mechanical Properties of the Cadaveric and Hybrid III Lumbar Spines

1998-11-02
983160
This study identified the mechanical properties of ten cadaveric lumbar spines and two Hybrid III lumbar spines. Eight tests were performed on each specimen: tension, compression, anterior shear, posterior shear, left lateral shear, flexion, extension and left lateral bending. Each test was run at a displacement rate of 100 mm/sec. The maximum displacements were selected to approximate the loading range of a 50 km/h Hybrid III dummy sled test and to be non-destructive to the specimens. Load, linear displacement and angular displacement data were collected. Bending moment was calculated from force data. Each mode of loading demonstrated consistent characteristics. The load-displacement curves of the Hybrid III lumbar spine demonstrated an initial region of high stiffness followed by a region of constant stiffness.
Technical Paper

The Influence of Calcium Treatment on the Mechanical Properties of Plain Carbon (SAE 1050) Steel

1994-03-01
940253
The influence of calcium treatment on the mechanical properties of a plain carbon steel (SAE 1050) was investigated. The mechanical properties investigated were tensile and impact strength, fatigue crack growth rate, and the fatigue threshold. Impact testing was conducted at both room temperature and at -40°C. Several heats of both calcium and non-calcium treated steel (SAE 1050) were tested in both the as hot-rolled condition and in the quenched and tempered condition (with a hardness level of HRC = 45). The results of this investigation show no significant difference in the tensile properties or room temperature impact properties between the calcium treated and the non-calcium treated steels. However, the impact strengths of calcium treated steels were slightly higher than that of non-calcium treated steels at -40°C.
Technical Paper

Upper Extremity Injuries Related to Air Bag Deployments

1994-03-01
940716
From our crash investigations of air bag equipped passenger cars, a subset of upper extremity injuries are presented that are related to air bag deployments. Minor hand, wrist or forearm injuries-contusions, abrasions, and sprains are not uncommonly reported. Infrequently, hand fractures have been sustained and, in isolated cases, fractures of the forearm bones or of the thumb and/or adjacent hand. The close proximity of the forearm or hand to the air bag module door is related to most of the fractures identified. Steering wheel air bag deployments can fling the hand-forearm into the instrument panel, rearview mirror or windshield as indicated by contact scuffs or tissue debris or the star burst (spider web) pattern of windshield breakage in front of the steering wheel.
X