Refine Your Search

Search Results

Viewing 1 to 2 of 2
Journal Article

Impact of A/F Ratio on Ion Current Features Using Spark Plug with Negative Polarity

2008-04-14
2008-01-1005
The increasing interest and requirement for improved electronic engine control during the last few decades, has led to the implementation of several different sensor technologies. The process of utilizing the spark plug as a combustion probe to monitor the different combustion related parameters such as knock, misfire, Ignition timing, and air-fuel ratio have been the subject of research for some time now. The air-fuel ratio is one of the most important engine operating parameters that has an impact on the combustion process, engine-out emissions, fuel economy, indicated mean effective pressure and exhaust gas composition and temperature. Furthermore, air-fuel ratio affects the ion produced during flame kernel initiation and post flame propagation. In this paper, an investigation is made to determine the effect of air-fuel ratio on ion current, using gasoline and methane under different spark plug designs and engine operating conditions.
Technical Paper

Ion Current in a Spark Ignition Engine using Negative Polarity on Center Electrode

2007-04-16
2007-01-0646
Most of the previous research on flame ionization in spark ignition engines applied positive polarity on the spark plug center electrode, referred to as positively biased probe. In this paper an investigation is made to determine the characteristics of the ion current signal with negatively biased probe. The factors that contribute to the second ion current peak, reported to be missing with negative polarity, are investigated. Experiments were conducted on a research single-cylinder, spark ignition engine and the negative polarity is applied by a SmartFire Plasma Ignition system. The effect of different spark plug designs and engine operating parameters on the amplitude and timing of each of the two ion current peaks is determined. The results indicated that, with negative polarity, the cathode area is one of the main factors that contribute to the amplitude of the ion current signal, particularly the second peak.
X