Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

A Comparative Study on Fatigue Damage of Caldie™ from Different Manufacturing Routes

2022-03-29
2022-01-0245
In automotive body manufacturing the dies for blanking/trimming/piercing are under most severe loading condition involving high contact stress at high impact loading and large number of cycles. With continuous increase in sheet metal strength, the trim die service life becomes a great concern for industries. In this study, competing trim die manufacturing routes were compared, including die raw materials produced by hot-working (wrought) vs. casting, edge-welding (as repaired condition) vs. bulk base metals (representing new tools), and the heat treatment method by induction hardening vs. furnace through-heating. CaldieTM, a Uddeholm trademarked grade was used as trim die material. The mechanical tests are performed using a WSU developed trimming simulator, with fatigue loading applied at cubic die specimen’s cutting edges through a tungsten carbide rod to accelerate the trim edge damage. The tests are periodically interrupted at specified cycles for measurement of die edge damage.
Technical Paper

Onboard Cybersecurity Diagnostic System for Connected Vehicles

2021-09-21
2021-01-1249
Today’s advanced vehicles have high degree of interaction due to numerous sensors, actuators and also with complex communication within the control units. In order to hack a vehicle, it has to be within a certain range of communication. Here, we discuss the On-Board Diagnostic (OBD) regulations for next generation BEV/HEV, its vulnerabilities and cybersecurity threats that come with hacking. We propose three cybersecurity attack detection and defense methods: Cyber-Attack detection algorithm, Time-Based CAN Intrusion Detection Method and, Feistel Cipher Block Method. These control methods autonomously diagnose a cybersecurity problem in a vehicle’s onboard system using an OBD interface, such as OBD-II when a fault caused by a cyberattack is detected, All of this is achieved in an internal communication network structure. The results discussed here focus on the first detection method that is Cyber-Attack detection algorithm.
Technical Paper

A Data-Based Modeling Approach for the Prediction of Front Impact (NCAP) Safety Performance of a Passenger Vehicle

2021-04-06
2021-01-0923
Designing a vehicle for superior crash safety performance in consumer rating tests such as US-NCAP is a compelling target in the design of passenger vehicles. In today’s context, there is also a high emphasis on making a vehicle as lightweight as possible which calls for an efficient design. In modern vehicle design, these objectives can only be achieved through Computer-Aided Engineering (CAE) for which a detailed CAD (Computer-Aided Design) model of a vehicle is a pre-requisite. In the absence of the latter (i.e. a matured CAD model) at the initial and perhaps the most crucial phase of vehicle body design, a rational approach to design would be to resort to a knowledge-based methodology which can enable crash safety assessment of an assumed design using artificial intelligence techniques such as neural networks.
Technical Paper

Chassis Lightweight Hole Placement with Weldline Evaluation

2021-01-07
2020-01-5217
Vehicle weight-driven design comes amid rising higher fuel efficiency standards and must meet the criteria—pass proving ground (PG) test events that are equivalent to customer usage. Computer-aided engineering (CAE) fatigue analysis for PG is a successful push behind to digitally simulate vehicle durability performance with high fidelity. The need for vehicle weight reduction often arises in the vehicle development final phases when CAE methods, time, and tangible cost-effective opportunities are limited or nonexistent. In this research, a new CAE methodology is developed to identify opportunities for lightweight hole placement in the chassis structure and deliver a cost-effective lightweight solution with no additional impact on fatigue life. The successful application of this new methodology exhibits the effectiveness of the truck frame, which is the key chassis structure to support the body, suspension, and powertrain.
Journal Article

A Preliminary Study on the Restraint System of Self-Driving Car

2020-04-14
2020-01-1333
Due to the variation of compartment design and occupant’s posture in self-driving cars, there is a new and major challenge for occupant protection. In particular, the studies on occupant restraint systems used in the self-driving car have been significantly delayed compared to the development of the autonomous technologies. In this paper, a numerical study was conducted to investigate the effectiveness of three typical restraint systems on the driver protection in three different scenarios.
Technical Paper

Response Ratio Development for Lateral Pendulum Impact with Porcine Thorax and Abdomen Surrogate Equivalents

2020-03-31
2019-22-0007
There has been recent progress over the past 10 years in research comparing 6-year-old thoracic and abdominal response of pediatric volunteers, pediatric post mortem human subjects (PMHS), animal surrogates, and 6-year-old ATDs. Although progress has been made to guide scaling laws of adult to pediatric thorax and abdomen data for use in ATD design and development of finite element models, further effort is needed, particularly with respect to lateral impacts. The objective of the current study was to use the impact response data of age equivalent swine from Yaek et al. (2018) to assess the validity of scaling laws used to develop lateral impact response corridors from adult porcine surrogate equivalents (PSE) to the 3-year-old, 6-year-old, and 10-year-old for the thorax and abdominal body regions.
Technical Paper

Development of Subject-Specific Elderly Female Finite Element Models for Vehicle Safety

2019-04-02
2019-01-1224
Previous study suggested that female, thin, obese, and older occupants had a higher risk of death and serious injury in motor vehicle crashes. Human body finite element models were a valuable tool in the study of injury biomechanics. The mesh deformation method based on radial basis function(RBF) was an attractive alternative for morphing baseline model to target models. Generally, when a complex model contained many elements and nodes, it was impossible to use all surface nodes as landmarks in RBF interpolation process, due to its prohibitive computational cost. To improve the efficiency, the current technique was to averagely select a set of nodes as landmarks from all surface nodes. In fact, the location and the number of selected landmarks had an important effect on the accuracy of mesh deformation. Hence, how to select important nodes as landmarks was a significant issue. In the paper, an efficient peak point-selection RBF mesh deformation method was used to select landmarks.
Technical Paper

Investigating Collaborative Robot Gripper Configurations for Simple Fabric Pick and Place Tasks

2019-04-02
2019-01-0699
Fiber composite materials are widely used in many industrial applications - specially in automotive, aviation and consumer goods. Introducing light-weighting material solutions to reduce vehicle mass is driving innovative materials research activities as polymer composites offer high specific stiffness and strength compared to contemporary engineering materials. However, there are issues related to high production volume, automation strategies and handling methods. The state of the art for the production of these light-weight flexible textile or composite fiber products is setting up multi-stage manual operations for hand layups. Material handling of flexible textile/fiber components is a process bottleneck. Consequently, the long term research goal is to develop semi-automated pick and place processes for flexible materials utilizing collaborative robots within the process. Collaborative robots allow for interactive human-machine tasks to be conducted.
Technical Paper

Control of Robots Using Discrete Event System Theory

2018-04-03
2018-01-1391
In this paper, we present a project being conducted at Yalong Educational Equipment Company on control of educational robots using discrete event system theory. An educational robot is a programmable robot to be used by students for training and learning. To model a robot, we divide the robot into nine physical modules. Each module is modeled as an automaton. Parallel composition is used to obtain the entire model. The robot can be programmed to perform sequences of basic tasks. We investigate six basic tasks and use supervisors to control and achieve the tasks. Desired languages are obtained for all tasks and supervisory control theory is used to synthesize supervisors. To reduce computational complexity, modular/coordinated supervisors are used
Technical Paper

Utilizing Public Vehicle Travel Survey Data Sets for Vehicle Driving Pattern and Fuel Economy Studies

2017-03-28
2017-01-0232
Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
Technical Paper

Effect of Strain Rate on Mechanical Responses of Jute-Polyester Composites

2017-03-28
2017-01-1467
There has been a keen interest in recent times on implementation of lightweight materials in vehicles to bring down the unladen weight of a vehicle for enhancing fuel efficiency. Fiber-reinforced composites comprise a class of such materials. As sustainability is also a preoccupation of current product development engineers including vehicle designers, bio-composites based on natural fibers are receiving a special attention. Keeping these motivations of lower effective density, environment friendliness and occupational safety in mind, woven jute fabric based composites have been recently studied as potential alternatives to glass fiber composites for structural applications in automobiles. In the past, mechanical characterization of jute-polyester composites were restricted to obtaining their stress-strain behaviors under quasi-static conditions.
Journal Article

Methods for Evaluating the Functional Work Space for Machine Tools and 6 Axis Serial Robots

2016-04-05
2016-01-0338
The ‘boundary of space’ model representing all possible positions which may be occupied by a mechanism during its normal range of motion (for all positions and orientations) is called the work envelope. In the robotic domain, it is also known as the robot operating envelope or workspace. Several researchers have investigated workspace boundaries for different degrees of freedom (DOF), joint types and kinematic structures utilizing many approaches. The work envelope provides essential boundary information, which is critical for safety and layout concerns, but the work envelope information does not by itself determine the reach feasibility of a desired configuration. The effect of orientation is not captured as well as the coupling related to operational parameters. Included in this are spatial occupancy concerns due to linking multiple kinematic chains, which is an issue with multi-tasking machine tools, and manufacturing cells.
Journal Article

A Framework for Collaborative Robot (CoBot) Integration in Advanced Manufacturing Systems

2016-04-05
2016-01-0337
Contemporary manufacturing systems are still evolving. The system elements, layouts, and integration methods are changing continuously, and ‘collaborative robots’ (CoBots) are now being considered as practical industrial solutions. CoBots, unlike traditional CoBots, are safe and flexible enough to work with humans. Although CoBots have the potential to become standard in production systems, there is no strong foundation for systems design and development. The focus of this research is to provide a foundation and four tier framework to facilitate the design, development and integration of CoBots. The framework consists of the system level, work-cell level, machine level, and worker level. Sixty-five percent of traditional robots are installed in the automobile industry and it takes 200 hours to program (and reprogram) them.
Journal Article

A Linkage Based Solution Approach for Determining 6 Axis Serial Robotic Travel Path Feasibility

2016-04-05
2016-01-0336
When performing trajectory planning for robotic applications, there are many aspects to consider, such as the reach conditions, joint and end-effector velocities, accelerations and jerk conditions, etc. The reach conditions are dependent on the end-effector orientations and the robot kinematic structure. The reach condition feasibility is the first consideration to be addressed prior to optimizing a solution. The ‘functional’ work space or work window represents a region of feasible reach conditions, and is a sub-set of the work envelope. It is not intuitive to define. Consequently, 2D solution approaches are proposed. The 3D travel paths are decomposed to a 2D representation via radial projections. Forward kinematic representations are employed to define a 2D boundary curve for each desired end effector orientation.
Journal Article

The Dimensional Model of Driver Demand: Extension to Auditory-Vocal and Mixed-Mode Tasks

2016-04-05
2016-01-1427
The Dimensional Model of Driver Demand is extended to include Auditory-Vocal (i.e., pure “voice” tasks), and Mixed-Mode tasks (i.e., a combination of Auditory-Vocal mode with visual-only, or with Visual-Manual modes). The extended model was validated with data from 24 participants using the 2014 Toyota Corolla infotainment system in a video-based surrogate driving venue. Twenty-two driver performance metrics were collected, including total eyes-off-road time (TEORT), mean single glance duration (MSGD), and proportion of long single glances (LGP). Other key metrics included response time (RT) and miss rate to a Tactile Detection Response Task (TDRT). The 22 metrics were simplified using Principal Component Analysis to two dimensions. The major dimension, explaining 60% of total variance, we interpret as the attentional effects of cognitive demand. The minor dimension, explaining 20% of total variance, we interpret as physical demand.
Technical Paper

Driver Demand: Eye Glance Measures

2016-04-05
2016-01-1421
This study investigated driver glances while engaging in infotainment tasks in a stationary vehicle while surrogate driving: watching a driving video recorded from a driver’s viewpoint and projected on a large screen, performing a lane-tracking task, and performing the Tactile Detection Response Task (TDRT) to measure attentional effects of secondary tasks on event detection and response. Twenty-four participants were seated in a 2014 Toyota Corolla production vehicle with the navigation system option. They performed the lane-tracking task using the vehicle’s steering wheel, fitted with a laser pointer to indicate wheel movement on the driving video. Participants simultaneously performed the TDRT and a variety of infotainment tasks, including Manual and Mixed-Mode versions of Destination Entry and Cancel, Contact Dialing, Radio Tuning, Radio Preset selection, and other Manual tasks. Participants also completed the 0-and 1-Back pure auditory-vocal tasks.
Technical Paper

Study of Muscle Activation of Driver’s Lower Extremity at the Collision Moment

2016-04-05
2016-01-1487
At the collision moment, a driver’s lower extremity will be in different foot position, which leads to the different posture of the lower extremity with various muscle activations. These will affect the driver’s injury during collision, so it is necessary to investigate further. A simulated collision scene was constructed, and 20 participants (10 male and 10 female) were recruited for the test in a driving simulator. The braking posture and muscle activation of eight major muscles of driver’s lower extremity (both legs) were measured. The muscle activations in different postures were then analyzed. At the collision moment, the right leg was possible to be on the brake (male, 40%; female, 45%), in the air (male, 27.5%; female, 37.5%) or even on the accelerator (male, 25%; female, 12.5%). The left leg was on the floor all along.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

Baxter Kinematic Modeling, Validation and Reconfigurable Representation

2016-04-05
2016-01-0334
A collaborative robot or cobot is a robot that can safely and effectively interact with human workers while performing industrial tasks. The ability to work alongside humans has increased the importance of collaborative robots in the automation industry, as this unique feature is a much needed property among robots nowadays. Rethink Robotics has pioneered this unique discipline by building many robots including the Baxter Robot which is exclusive not only because it has collaborative properties, but because it has two arms working together, each with 7 Degrees Of Freedom. The main goal of this research is to validate the kinematic equations for the Baxter collaborative robot and develop a unified reconfigurable kinematic model for the Left and Right arms so that the calculations can be simplified.
X