Refine Your Search

Topic

Author

Search Results

Technical Paper

Development of a Multiple Injection Strategy for Heated Gasoline Compression Ignition (HGCI)

2023-04-11
2023-01-0277
A multiple-injection combustion strategy has been developed for heated gasoline direct injection compression ignition (HGCI). Gasoline was injected into a 0.4L single cylinder engine at a fuel pressure of 300bar. Fuel temperature was increased from 25degC to a temperature of 280degC by means of electric injector heater. This approach has the potential of improving fuel efficiency, reducing harmful CO and UHC as well as particulate emissions, and reducing pressure rise rates. Moreover, the approach has the potential of reducing fuel system cost compared to high pressure (>500bar) gasoline direct injection fuel systems available in the market for GDI SI engines that are used to reduce particulate matter. In this study, a multiple injection strategy was developed using electric heating of the fuel prior to direct fuel injection at engine speed of 1500rpm and load of 12.3bar IMEP.
Technical Paper

Potential of a Hydrogen Fueled Opposed-Piston Four Stroke (OP4S) Engine

2023-04-11
2023-01-0408
The aim of this study is to develop a pathway towards Hydrogen combustoin on an opposed-piston four stroke engine (OP4S) by using 1D simulation code from Gamma Technologies. By its configuration, the OP4S engine has significant thermal efficiency benefits versus conventional ICE. The benefit of the OP4S is reduced heat losses due to elimination of the cylinder head, which increase the brake thermal efficiency. A hydrogen-fueled (H2) opposed-piston four stroke (OP4S) engine was modeled using GTPower to determine the potential on performance, thermal efficiency and emissions targets. The 1D model was first validated on E10 gasoline using experimental data and was used to explore changes to fuel type in NG and H2, fueling location (TPI and DI), fuel mixture strength (stoichiometric and lean), for an optimized plenum volume and turbocharger selection.
Technical Paper

An Experimental Investigation on Aldehyde and Methane Emissions from Hydrous Ethanol and Gasoline Fueled SI Engine

2020-09-15
2020-01-2047
Use of ethanol as gasoline replacement can contribute to the reduction of nitrogen oxide (NOx) and carbon oxide (CO) emissions. Depending on ethanol production, significant reduction of greenhouse-gas emissions is possible. Concentration of certain species, such as unburned ethanol and acetaldehyde in the engine-out emissions are known to rise when ratio of ethanol to gasoline increases in the fuel. This research explores on hydrous ethanol fueled port-fuel injection (PFI) spark ignition (SI) engine emissions that contribute to photochemical formation of ozone, or so-called ozone precursors and the precursor of peroxyacetyl nitrates (PANs). The results are compared to engine operation on gasoline. Concentration obtained by FTIR gas analyzer, and mass-specific emissions of formaldehyde (HCHO), acetaldehyde (MeCHO) and methane (CH4) under two engine speed, four load and two spark advance settings are analyzed and presented.
Technical Paper

On-Road and Chassis Dynamometer Evaluation of a Pre-Transmission Parallel PHEV

2019-04-02
2019-01-0365
This paper details the vehicle testing activities performed during the Year 4 of the EcoCAR 3 competition by the Wayne State University team on a Pre-Transmission Parallel PHEV. The paper focuses on two main testing platforms: the chassis dynamometer and the closed-course track (on-road). The focus of the former is to evaluate the emissions and energy consumption associated with different driving scenarios, while the latter has been used to assess the vehicle performance and their impact on the consumer appeal. The paper presents the objectives of each test, the setup accomplished for the different vehicle testing platforms, the results obtained and the comparison with the values expected from simulations. In addition, the impact of the results on the refinement of the control strategies and on the validation of the simulation models are discussed.
Technical Paper

Investigation of Fuel Condensation Processes under Non-reacting Conditions in an Optically-Accessible Engine

2019-04-02
2019-01-0197
Engine experiments have revealed the importance of fuel condensation on the emission characteristics of low temperature combustion. However, direct in-cylinder experimental evidence has not been reported in the literature. In this paper, the in-cylinder condensation processes observed in optically accessible engine experiments are first illustrated. The observed condensation processes are then simulated using state-of-the-art multidimensional engine CFD simulations with a phase transition model that incorporates a well-validated phase equilibrium numerical solver, in which a thermodynamically consistent phase equilibrium analysis is applied to determine when mixtures become unstable and a new phase is formed. The model utilizes fundamental thermodynamics principles to judge the occurrence of phase separation or combination by minimizing the system Gibbs free energy.
Technical Paper

Mechanisms of Post-Injection Soot-Reduction Revealed by Visible and Diffused Back-Illumination Soot Extinction Imaging

2018-04-03
2018-01-0232
Small closely-coupled post injections of fuel in diesel engines are known to reduce engine-out soot emissions, but the relative roles of various underlying in-cylinder mechanisms have not been established. Furthermore, the efficacy of soot reduction is not universal, and depends in unclear ways on operating conditions and injection schedule, among other factors. Consequently, designing engine hardware and operating strategies to fully realize the potential of post-injections is limited by this lack of understanding. Following previous work, several different post-injection schedules are investigated using a single-cylinder 2.34 L heavy-duty optical engine equipped with a Delphi DFI 1.5 light-duty injector. In this configuration, adding a closely-coupled post injection with sufficiently short injection duration can increase the load without increasing soot emissions.
Journal Article

RCCI Combustion Regime Transitions in a Single-Cylinder Optical Engine and a Multi-Cylinder Metal Engine

2017-09-04
2017-24-0088
Reactivity Controlled Compression Ignition (RCCI) is an approach to increase engine efficiency and lower engine-out emissions by using in-cylinder stratification of fuels with differing reactivity (i.e., autoignition characteristics) to control combustion phasing. Stratification can be altered by varying the injection timing of the high-reactivity fuel, causing transitions across multiple regimes of combustion. When injection is sufficiently early, combustion approaches a highly-premixed autoignition regime, and when it is sufficiently late it approaches more mixing-controlled, diesel-like conditions. Engine performance, emissions, and control authority over combustion phasing with injection timing are most favorable in between, within the RCCI regime.
Technical Paper

Autoignition and Combustion of ULSD and JP8 during Cold Starting of a High Speed Diesel Engine

2017-03-28
2017-01-0797
Cold starting problems of diesel engines are caused mainly by the failure of the auto-ignition process or the subsequent combustion of the rest of the charge. The problems include long cranking periods and combustion instability leading to an increase in fuel consumption in addition to the emission of undesirable unburned hydrocarbons which appear in the exhaust as white smoke. The major cause of these problems is the low temperature and pressure of the charge near the end of the compression stroke and/or the poor ignition quality of the fuel. This paper presents the results of an experimental investigation of cold starting of a high speed diesel engine with ULSD (Ultra Low Sulphur Diesel) and JP8 (Jet Propulsion) fuels at ambient temperature (25°C). A detailed analysis is made of the autoignition and combustion of the two fuels in the first few cycles in the cold start transient. In addition, a comparison is made between these processes for the two fuels during idle operation.
Technical Paper

Direct Injection Compression Ignition Engine: Cold Start on Gasoline and Diesel

2017-03-28
2017-01-0699
The superior fuel economy of direct injection internal combustion engines (diesel and gasoline) is related to use of a high compression ratio to auto-ignite the fuel and the overall lean combustible mixture. Two of the major problems in diesel engine emissions are the NOx and soot emissions, which are caused by the heterogeneity of the charge and the properties of the diesel fuel. Conventional Direct Injection Spark Ignition Gasoline engines don't have these problems because of the fuel properties particularly its volatility. However, its efficiency and specific power output are limited by the knock, knock produced preignition and the sporadic preignition phenomenon. The Gasoline Direct Injection Compression Ignition (GDICI) engine combines the superior features of the two engines by increasing the compression ratio and use of gasoline as a fuel.
Technical Paper

Advancement and Validation of a Plug-In Hybrid Electric Vehicle Plant Model

2016-04-05
2016-01-1247
The objective of the research into modeling and simulation was to provide an improvement to the Wayne State EcoCAR 2 team’s math-based modeling and simulation tools for hybrid electric vehicle powertrain analysis, with a goal of improving the simulation results to be less than 10% error to experimental data. The team used the modeling and simulation tools for evaluating different outcomes based on hybrid powertrain architecture changes (hardware), and controls code development and testing (software). The first step was model validation to experimental data, as the plant models had not yet been validated. This paper includes the results of the team’s work in the U.S. Department of Energy’s EcoCAR 2 Advanced vehicle Technical Competition for university student teams to create and test a plug-in hybrid electric vehicle for reducing petroleum oil consumption, pollutant emissions, and Green House Gas (GHG) emissions.
Technical Paper

An Experimental and Computational Investigation of Water Condensation inside the Tubes of an Automotive Compact Charge Air Cooler

2016-04-05
2016-01-0224
To address the need of increasing fuel economy requirements, automotive Original Equipment Manufacturers (OEMs) are increasing the number of turbocharged engines in their powertrain line-ups. The turbine-driven technology uses a forced induction device, which increases engine performance by increasing the density of the air charge being drawn into the cylinder. Denser air allows more fuel to be introduced into the combustion chamber, thus increasing engine performance. During the inlet air compression process, the air is heated to temperatures that can result in pre-ignition resulting and reduced engine functionality. The introduction of the charge air cooler (CAC) is therefore, necessary to extract heat created during the compression process. The present research describes the physics and develops the optimized simulation method that defines the process and gives insight into the development of CACs.
Technical Paper

Behavior of Adhesively Bonded Steel Double Hat-Section Components under Axial Quasi-Static and Impact Loading

2016-04-05
2016-01-0395
An attractive strategy for joining metallic as well as non-metallic substrates through adhesive bonding. This technique of joining also offers the functionality for joining dissimilar materials. However, doubts are often expressed on the ability of such joints to perform on par with other mechanical fastening methodologies such as welding, riveting, etc. In the current study, adhesively-bonded single lap shear (SLS), double lap shear (DLS) and T-peel joints are studied initially under quasi-static loading using substrates made of a grade of mild steel and an epoxy-based adhesive of a renowned make (Huntsman). Additionally, single lap shear joints comprised of a single spot weld are tested under quasi-static loading. The shear strengths of adhesively-bonded SLS joints and spot-welded SLS joints are found to be similar. An important consideration in the deployment of adhesively bonded joints in automotive body structures would be the performance of such joints under impact loading.
Journal Article

Performance of an IDI Engine Fueled with Fatty Acid Methyl Esters Formulated from Cotton Seeds Oils

2015-04-14
2015-01-0806
This study evaluates the performance of an indirect injection (IDI) diesel engine fueled with cotton seed biodiesel while assessing the engine's multi-fuel capability. Millions of tons of cotton seeds are available in the south of the US every year and approximately 10% of oil contained in the seeds can be extracted and transesterified. An investigation of combustion, emissions, and efficiency was performed using mass ratios of 20-50% cotton seed biodiesel (CS20 and CS50) in ultra-low sulfur diesel #2 (ULSD#2). Each investigation was run at 2400 rpm with loads of 4.2 - 6.3 IMEP and compared to the reference fuel ULDS#2. The ignition delay ranged in a narrow interval of 0.8-0.97ms across the blends and the heat release rate showed comparable values and trends for all fuel blends. The maximum volume averaged cylinder temperature increased by approximately 100K with each increase in 1 bar IMEP load but the maximum remained constants across the blends.
Technical Paper

Plug-in Hybrid Electric Vehicle Reengineering of a Conventional Sedan for EcoCAR2

2015-04-14
2015-01-1235
The Wayne State University student team reengineered a mid-sized sedan into a functional plug-in hybrid electric vehicle as participants in the EcoCAR 2 competition sponsored by the US Department of Energy and managed by Argonne National Laboratory. The competition goals included reducing petroleum usage, emissions, and energy consumption through implementing advanced vehicle technologies. During the competition, the team did plug-in charging of the 19 kWh high voltage traction battery, drove in pure electric mode (engine off) until the battery was depleted, then switched to hybrid mode and continued driving by using E85 from the fuel tank. The pure electric mode vehicle driving range was 48 km [30 miles] while pulling an emissions instrumented test trailer and projected to be 58 km [36 miles] without the test trailer load for the competition's city/highway blend drive cycle.
Technical Paper

GDi Nozzle Parameter Studies Using LES and Spray Imaging Methods

2014-04-01
2014-01-1434
Development of in-cylinder spray targeting, plume penetration and atomization of the gasoline direct-injection (GDi) multi-hole injector is a critical component of combustion developments, especially in the context of the engine downsizing and turbo-charging trend that has been adopted in order to achieve the European target CO2, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards the optimization of injector nozzle designs in order to improve spray characteristics. Development of accurate predictive models is desired to understand the impact of nozzle design parameters as well as the underlying physical fluid dynamic mechanisms resulting in the injector spray characteristics. This publication reports Large Eddy Simulation (LES) analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries.
Technical Paper

Combustion and Emissions Characteristics of JP-8 Blends and ULSD #2 with Similar CN in a Direct Injection Naturally Aspirated Compression Engine

2013-04-08
2013-01-1682
"The Single Fuel Forward Policy" legislation enacted in the United States mandates that deployed U.S. military ground vehicles must be operable with aviation fuel (JP-8). This substitution of JP-8 for diesel raises concerns about the compatibility of this fuel with existing reciprocating piston engine systems. This study investigates the combustion, emissions, and performance characteristics of blends of JP-8 and Ultra Low Sulfur Diesel (ULSD) fuels with similar cetane numbers (CN), 48 (JP-8) and 47(ULSD), respectively, in a direct injection (DI) compression ignition engine over the load range of 3-8 bar imep at 1400 rpm. The results showed that JP-8 blends and ULSD had ignition delays ranging from approximately 1.0-1.4 ms and an average combustion duration time in the range of 47-65 CAD. Cylinder maximum heat flux values were found to be between 2.0 and 4.4 MW/m₂, with radiation flux increasing much faster than convection flux while increasing the imep.
Technical Paper

Direct Visualization of Combustion in an E85-Fueled DISI Engine under Various Operation Conditions

2013-04-08
2013-01-1129
Gasoline-direct-injection (GDI) engines have been adopted increasingly by the automotive industry in the recent years due to their performance, effects on the environment, and customers' demand on advanced technology. However, the knowledge of detailed combustion process in such engines is still not thoroughly analyzed and understood. With optically accessible engines (OAE) and advanced measuring techniques, such as high-speed digital imaging, the in-cylinder combustion process is made available directly to researchers. The present study primarily focuses on the effects of different parameters of engine control on the combustion process, such as fuel types, valve deactivation, ignition timing, spark energy, injection timing, air-fuel ratio, and exhaust gas recirculation. Three engine heads of a 2.0L GDI engine are used with modification to acquire different optical access.
Technical Paper

GDi Skew-Angled Nozzle Flow and Near-Field Spray Analysis using Optical and X-Ray Imaging and VOF-LES Computational Fluid Dynamics

2013-04-08
2013-01-0255
Improvement of spray atomization and penetration characteristics of the gasoline direct-injection (GDi ) multi-hole injector is a critical component of the GDi combustion developments, especially in the context of engine down-sizing and turbo-charging trend that is adopted in order to achieve the European target CO₂, US CAFE, and concomitant stringent emissions standards. Significant R&D efforts are directed towards optimization of the nozzle designs, in order to improve the GDi multi-hole spray characteristics. This publication reports VOF-LES analyses of GDi single-hole skew-angled nozzles, with β=30° skew (bend) angle and different nozzle geometries. The objective is to extend previous works to include the effect of nozzle-hole skew angle on the nozzle flow and spray primary breakup. VOF-LES simulations of a single nozzle-hole of a purpose-designed GDi multi-hole seat geometry, with three identical nozzle-holes per 120° seat segment, are performed.
Technical Paper

Equivalent Drive Cycle Analysis, Simulation, and Testing - Wayne State University's On-Road Route for EcoCAR2

2013-04-08
2013-01-0549
The Wayne State University (WSU) EcoCAR2 student team is participating in a design competition for the conversion of a 2013 Chevrolet Malibu into a plug-in hybrid. The team created a repeatable on-road test drive route using local public roads near the university that would be of similar velocity ranges contained in the EcoCAR2 4-Cycle Drive Schedule - a weighted combination of four different EPA-based drive cycles (US06 split into city and highway portions, all of the HWFET, first 505 seconds portion of UDDS). The primary purpose of the team's local on-road route was to be suitable for testing the team's added hybrid components and control strategy for minimizing petroleum consumption and tail pipe emissions. Comparison analysis of velocities was performed between seven local routes and the EcoCAR2 4-Cycle Drive Schedule. Three of the seven local routes had acceptable equivalence for velocity (R₂ ≻ 0.80) and the team selected one of them to be the on-road test drive route.
Journal Article

Comparison of In-Cylinder Soot Evolution in an Optically Accessible Engine Fueled with JP-8 and ULSD

2012-04-16
2012-01-1315
Due to the single fuel concept implemented by the US military, the soot production of diesel engines fueled with JP-8 has important implications for military vehicle visual signature and survivability. This work compares in-cylinder soot formation and oxidation of JP-8 and ULSD in a small-bore, optical diesel engine. Experimental engine-out soot emission measurements are compared to crank-angle resolved two-color measurements of soot temperature and optical thickness, KL. A 3-D chemical kinetic-coupled CFD model with line of sight integration is employed in order to investigate the soot distribution in a 2-D projection associated with the imaging plane, as well as to aid in interpreting the third dimension along the optical depth which is not available within the experimental work. The study also examines the effect of volatility on soot emission characteristics by CFD simulation.
X