Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Guidance and Range Extension Control System for a Hybrid Projectile

2014-09-16
2014-01-2175
A Hybrid Projectile (HP) is a ballistically launched round that transforms into an Unmanned Aerial Vehicle (UAV) at a designated point during flight. Aerodynamic control surfaces and associated control laws were sought that would extend the projectile's range using body lift and include guidance for a selected point of impact. Several challenges were encountered during the modification of an existing projectile, in this case a 40mm round, to achieve range extension and controllability. The control surfaces must be designed to allow for de-spin, controllability, and natural static stability. Also, a control system with laws and guidance relationships between heading, pitch or glide rate, and the associated aerodynamic surface movements needed to be developed. The designed aerodynamic surfaces, external ballistics, and control methods developed were modeled in a projectile flight simulator built in MATLAB.
Journal Article

Roll and Pitch Produced During an Uneven Wing Deployment of a Hybrid Projectile

2014-09-16
2014-01-2112
Uneven wing deployment of a Hybrid Projectile (HP), an Unmanned Aerial Vehicle (UAV) that is ballistically launched and then transforms, was investigated to determine the amount of roll and pitch produced during wing deployment. During testing of an HP prototype, it was noticed that sometimes the projectile began to slightly roll after the wings were deployed shortly after apogee. In this study, an analytical investigation was done to determine how the projectile body dynamics would be affected by the wings being deployed improperly. Improper and uneven wing deployment situations were investigated throughout the course of this study. The first analyzed was a single wing delaying to open. The second was if only one wing was to lock into a positive angle of incidence. The roll characteristics when both wings were deployed but only one was locked into an angle of incidence resulted in a steady state roll rate of 4.5 degrees per second.
Journal Article

An Experimental Investigation of the Transient Effects Associated with Wing Deployment During Ballistic Flight

2011-10-18
2011-01-2647
Mortar weapons systems have existed for more than five hundred years. Though modern tube-launched rounds are far more advanced than the cannon balls used in the 15th century, the parabolic trajectory and inability to steer the object after launch remains the same. Equipping the shell with extending aerodynamic surfaces transforms the unguided round into a maneuverable munition with increased range [1] and precision [2]. The subject of this work is the experimental analysis of transient aerodynamic behavior of a transforming tube-launched unmanned aerial vehicle (UAV) during transition from a ballistic trajectory to winged flight. Data was gathered using a series of wind tunnel experiments to determine the lift, drag, and pitching moment exerted on the prototype in various stages of wing deployment. Flight models of the design were broken down into three configurations: “round”, “transforming”, and “UAV”.
Technical Paper

A Comparison of Wing Stowing Designs Focused on Increased Continuous Payload Volume for Projectile Applications

2011-10-18
2011-01-2782
West Virginia University's Mechanical and Aerospace Engineering Department is studying the benefits of continuous payload volume in transforming projectiles. Continuous payload volume is the single largest vacancy in a vehicle that may be utilized. Currently there is a market for transforming projectiles, which are gun launched (or tube launched) vehicles stowed in an initial configuration; which deploy wings once exiting the launcher to become small unmanned aircraft. WVU's proposed design uses a helical hinge, which allows the wing sections to be externally stowed outside the UAV's fuselage. Additionally, the design positions the vehicles wing sections sub-bore (or smaller than the guns internal diameter), and flush (smooth and planer) to the surface of the fuselage. The typical transforming winged projectile design considered, stores its wing sections along the center axis of the fuselage. This bisects the payload space and limits the continuous payload carrying potential.
X