Refine Your Search

Topic

Search Results

Viewing 1 to 13 of 13
Journal Article

Finite Element Analysis of Composite Over-wrapped Pressure Vessels for Hydrogen Storage

2013-09-24
2013-01-2477
This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall.
Journal Article

Using IAC Database for Longitudinal Study of Small to Medium Sized Automotive Industry Suppliers' Energy Intensity Changes

2013-04-08
2013-01-0833
Industries related to automotive manufacturing and its supply chain play a key role in leaving a carbon footprint during an automobile's life cycle. Per the report from Lawrence Berkeley National Laboratory (LBNL) in March, 2008 [1], “motor vehicle industry in the U.S. spends about $3.6 billion on energy annually.” The proposed research will focus on energy savings opportunities in automotive manufacturing and its supplier network. The US Department of Energy (DOE) funds 24 Industrial Assessment Centers (IAC) throughout the U.S. that conduct energy assessments at many of these facilities. The results of these assessments are summarized in a database maintained by Rutgers University which acts as the central management body for all the IACs. This research will present key concepts summarized from this database.
Technical Paper

Innovative Dense Lightweight Design for On-Board Hydrogen Storage Tank

2012-09-24
2012-01-2061
The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs.
Technical Paper

Analysis of Compressed Air and Process Heating Systems - A Case Study from Automotive Parts Manufacturer in Mexico

2012-04-16
2012-01-0323
Automotive industries in the US and around the world have enormous impact on the economy of each country. Not just the major vehicle manufacturer, but all the other companies in the supply chain are equally important. This was evident with the earthquake and Tsunami that happened in March 2011. Because of the massive destruction at suppliers' facilities, the automakers in the US and other countries struggled to get the necessary parts and supplies. This created a ripple effect throughout the world and led to the closure of several automakers' facilities for a long time. Thus, the automotive supply chains are as important as the main automotive manufacturing facilities. Since these suppliers produce a lot of parts and supplies, the corresponding energy usage is also significant. The current research is focused on compressed air and process heating system analysis at one of the automotive parts manufacturer in Mexico.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

Automobile Body Panel Color Measurement Test

1997-02-24
970995
It has been proposed that an automated remote color inspection of automobile body panels is possible with a reasonably precise color measurement. This paper outlines a test of a new 3D color measurement technology as applied to this task and presents the results of the first test. A camera is set up several feet away from a car body; a 3D orientation measuring system takes both 3D and color data from the car. The raw data is presented as a set of 3D graphs; the geometry-corrected data is also provided. Statistical analysis is presented to indicate system precision.
Technical Paper

Heavy Duty Testing Cycles: Survey and Comparison

1994-11-01
942263
The need to assess the effect of exhaust gas emissions from heavy duty vehicles (buses and trucks) on emission inventories is urgent. Exhaust gas emissions measured during the fuel economy measurement test procedures that are used in different countries sometimes do not represent the in-use vehicle emissions. Since both local and imported vehicles are running on the roads, it is thought that studying the testing cycles of the major vehicle manufacturer countries is worthy. Standard vehicle testing cycles on chassis dynamometer from the United States, Canada, European Community Market, and Japan1 are considered in this study. Each of the tested cycles is categorized as either actual or synthesized cycle and its representativness of the observed driving patterns is investigated. A total of fourteen parameters are chosen to characterize any given driving cycle and the cycles under investigation were compared using these parameters.
Technical Paper

Sampling Strategies for Characterization of the Reactive Components of Heavy Duty Diesel Exhaust Emissions

1994-11-01
942262
Techniques have been developed to sample and speciate dilute heavy duty diesel exhaust to determine the specific reactivities and the ozone forming potential. While the Auto/Oil Air Quality Improvement Research Program (AQIRP) has conducted a comprehensive investigation to develop data on potential improvements in vehicle emissions and air quality from reformulated gasoline and various other alternative fuels. However, the development of sampling protocols and speciation of heavy duty diesel exhaust is still in its infancy [1, 2, 3, 4, 5 and 6]. This paper focuses on the first phase of the heavy duty diesel speciation program, that involves the development of a unique set of sampling protocols for the gas phase, semi-volatile and particulate matter from the exhaust of engines operating on different types of diesel fuel. Effects of sampling trains, sampling temperatures, semi-volatile adsorbents and driving cycles are being investigated.
Technical Paper

An Elasticity Solution of Angle-Ply Laminated Composite Shells Based on a Higher-Order FE Analysis

1994-03-01
940617
In the case of advanced light weight material applications, the design of such components, in many cases, are based on applied surface tractions These surface loads can be caused by various means. When wind effects are present these tractions can be due to pressure, suction or drag. In the case of underwater applications, hydrostatic pressure and friction caused by moving against water current needs to be considered in the design. These are some of the traction load applications, a design engineer has to deal with in his advanced material applications. In contrast to the conventional materials, the modern structures made of highly directional dependent material properties, respond the applied loads and environment in an unpredicted way, so that, a detail analysis and design is always necessary. Hence in the present study a higher-order shear deformation formulation is developed to calculate the distribution of stresses accurately in angle-ply laminated shells of revolution.
Technical Paper

Engineering Modeling and Synthesis of a Rand Cam Engine Through CAD Parametric Techniques

1993-03-01
930061
In this paper an approach is presented for the system parameterization and synthesis of a Rand-Cam® Engine configuration based on an axial-cylindrical cam driven mechanism. This engine consists of a stationary axial-cylindrical cam on which axially moving pistons (vanes) sweep around the cam as they are driven by the rotor, providing the volume displacement as the rotor delivers the rotary output torque directly to the shaft. It has been documented that this engine configuration has some unique features that make it particularly suitable for high power to weight ratio applications. The modeling strategy makes use of higher order curve and surface modeling techniques and object modeling approaches based on profile extruding, blending operations and constructive solid geometry. Some of the resulting models are further used for finite element engineering analysis through a programmatic logic built into the parameterized general model.
Technical Paper

Analysis of RF Corona Discharge Plasma Ignition

1992-08-03
929502
Corona discharge from a RF quarter wave coaxial cavity resonator is considered as a plasma ignition source for spark ignited (SI) internal combustion (IC) engines. The gaseous discharge processes associated with this device are analyzed using principles of gas kinetics and gaseous electronics, with assumed values for the electric field strength. Corona discharge occurs when the electric field shaped and concentrated by a single electrode exceeds the breakdown potential of the surrounding gas. Ambient electrons, naturally present due to ionizing radiation, drift in the direction of the externally applied field, gaining energy while undergoing elastic collisions with neutral molecules. After gaining sufficient energy they dissociate, excite, or ionize the neutral particles through inelastic collision, creating additional electrons. This process leads to avalanche electrical breakdown of the gas within about 10-8 sec.
Technical Paper

Solid State Electrochemical Cell for NOx Reduction

1992-08-03
929418
An electrochemical cell is presented which reduces NOx emissions from a vehicle fueled by dedicated natural gas. The cell is comprised of a honeycomb shaped ceramic which is chemically coated with an electrically conductive material in two distinct regions which serve as electrodes such that, with the application of a voltage potential, a cathode and anode are formed. As the exhaust gas flows through the inner channels of the cell, the electrochemical reduction of NOx at the cathode yields nitrogen gas and oxide ions. The nitrogen continues to flow through the cell while the oxide ions dissolve in the solid electrolyte. At the anodic zone, oxide ions are converted to oxygen gas. The pressure drop across the cell was experimentally measured to insure that the back pressure created by the cell does not create a significant reduction in the efficiency of the engine.
Technical Paper

The Stiller-Smith Engine: Floating Gear Analysis

1987-02-01
870613
The Stiller-Smith Engine employs a non-standard gear train and as such requires a closer examination of the design and sizing of the gears. To accomplish this the motion of the Stiller-Smith gear train -will be compared to more familiar arrangements. The results of a kinematic and dynamic analysis will introduce the irregular forces that the gears are subjected to. The “floating” or “trammel” gear will be examined more closely, first stochastically and then with finite element analysis. This will pinpoint high stress concentrations on the gear and where they occur during the engine cycle, The configuration considered will be one with: an output shaft, negligible idler gear forces, and floating gear pins that are part of the connecting rods rather than the floating gear. Various loading techniques will be discussed with possible ramifications of each.
X