Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

Comparison of Particulate Matter Emissions from Different Aftertreatment Technologies in a Wind Tunnel

Stringent emission regulations have forced drastic technological improvements in diesel after treatment systems, particularly in reducing Particulate Matter (PM) emissions. Those improvements generally regard the use of Diesel Oxidation Catalyst (DOC), Diesel Particulate Filter (DPF) and lately also the use of Selective Catalyst Reduction (SCR) systems along with improved engine control strategies for reduction of NOx emissions from these engines. Studies that have led to these technological advancements were made in controlled laboratory environment and are not representative of real world emissions from these engines or vehicles. In addition, formation and evolution of PM from these engines are extremely sensitive to overall changes in the dilution process.
Technical Paper

ExhAUST: DPF Model for Real-Time Applications

Diesel Particulate Filters (DPFs) are well assessed exhaust aftertreatment devices currently equipping almost every modern diesel engine to comply with the most stringent emission standards. However, an accurate estimation of soot content (loading) is critical to managing the regeneration of DPFs in order to attain optimal behavior of the whole engine-after-treatment assembly, and minimize fuel consumption. Real-time models can be used to address challenges posed by advanced control systems, such as the integration of the DPF with the engine or other critical aftertreatment components or to develop model-based OBD sensors. One of the major hurdles in such applications is the accurate estimation of engine Particulate Matter (PM) emissions as a function of time. Such data would be required as input data for any kind of accurate models. The most accurate way consists of employing soot sensors to gather the real transient soot emissions signal, which will serve as an input to the model.
Technical Paper

Determination of Heavy-Duty Vehicle Energy Consumption by a Chassis Dynamometer

The federal emission standards for heavy duty vehicle engines require the exhaust emissions to be measured and calculated in unit form as grams per break horse-power-hour (g/bhp-hr). Correct emission results not only depend on the precise emission measurement but also rely on the correct determination of vehicle energy consumption. A Transportable Heavy-Duty Vehicle Emission Testing Laboratory (THDVETL) designed and constructed at West Virginia University provides accurate vehicle emissions measurements in grams over a test cycle. This paper contributes a method for measuring the energy consumption (bhp-hr) over the test cycle by a chassis dynamometer. Comparisons of analytical and experimental results show that an acceptable agreement is reached and that the THDVETL provides accurate responses as the vehicle is operated under transient loads and speeds. This testing laboratory will have particular value in comparing the behavior of vehicles operating on alternative fuels.