Refine Your Search

Topic

Search Results

Book

Prototype Powertrain in Motorsport Endurance Racing

2018-08-01
Racing continues to be the singular, preeminent source of powertrain development for automakers worldwide. Engineering teams rely on motorsports for the latest prototype testing and research. Endurance racing provides the harshest and most illuminating stage for system design validation of any motorsport competition. While advancements throughout the 20th Century brought about dramatic increases in engine power output, the latest developments from endurance racing may be more impactful for fuel efficiency improvements. Hybrid powertrains are a critical area of research for automakers and are being tested on the toughest of scales. Prototype Powertrain in Motorsport Endurance Racing brings together ten vital SAE technical papers and SAE Automotive Engineering magazine articles surrounding the advancements of hybrid powertrains in motorsports.
Journal Article

Finite Element Analysis of Composite Over-wrapped Pressure Vessels for Hydrogen Storage

2013-09-24
2013-01-2477
This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall.
Technical Paper

Characteristics of Exhaust Emissions from a Heavy-Duty Diesel Engine Retrofitted to Operate in Methane/Diesel Dual-Fuel Mode

2013-09-08
2013-24-0181
The need for a cleaner and less expensive alternative energy source to conventional petroleum fuels for powering the transportation sector has gained increasing attention during the past decade. Special attention has been directed towards natural gas (NG) which has proven to be a viable option due to its clean-burning properties, reduced cost and abundant availability, and therefore, lead to a steady increase in the worldwide vehicle population operated with NG. The heavy-duty vehicle sector has seen the introduction of natural gas first in larger, locally operated fleets, such as transit buses or refuse-haulers. However, with increasing expansion of the NG distribution network more drayage and long-haul fleets are beginning to adopt natural gas as a fuel.
Journal Article

Using IAC Database for Longitudinal Study of Small to Medium Sized Automotive Industry Suppliers' Energy Intensity Changes

2013-04-08
2013-01-0833
Industries related to automotive manufacturing and its supply chain play a key role in leaving a carbon footprint during an automobile's life cycle. Per the report from Lawrence Berkeley National Laboratory (LBNL) in March, 2008 [1], “motor vehicle industry in the U.S. spends about $3.6 billion on energy annually.” The proposed research will focus on energy savings opportunities in automotive manufacturing and its supplier network. The US Department of Energy (DOE) funds 24 Industrial Assessment Centers (IAC) throughout the U.S. that conduct energy assessments at many of these facilities. The results of these assessments are summarized in a database maintained by Rutgers University which acts as the central management body for all the IACs. This research will present key concepts summarized from this database.
Journal Article

Control and Testing of a 2-Mode Front-Wheel-Drive Hybrid-Electric Vehicle

2012-04-16
2012-01-1192
The new General Motors 2-mode hybrid transmission for front-wheel-drive vehicles has been incorporated into a 2009 Saturn Vue by the West Virginia University EcoCAR team. The 2-mode hybrid transmission can operate in either one of two electrically variable transmission modes or four fixed gear modes although only the electrically variable modes were explored in this paper. Other major power train components include a GM 1.3L SDE turbo diesel engine fueled with B20 biodiesel and an A123 Systems 12.9 kWh lithium-ion battery system. Two additional vehicle controllers were integrated for tailpipe emission control, CAN message integration, and power train hybridization control. Control laws for producing maximum fuel efficiency were implemented and include such features as engine auto-stop, regenerative braking and optimized engine operation. The engine operating range is confined to a high efficiency area that improves the overall combined engine and electric motor efficiency.
Technical Paper

Analysis of Compressed Air and Process Heating Systems - A Case Study from Automotive Parts Manufacturer in Mexico

2012-04-16
2012-01-0323
Automotive industries in the US and around the world have enormous impact on the economy of each country. Not just the major vehicle manufacturer, but all the other companies in the supply chain are equally important. This was evident with the earthquake and Tsunami that happened in March 2011. Because of the massive destruction at suppliers' facilities, the automakers in the US and other countries struggled to get the necessary parts and supplies. This created a ripple effect throughout the world and led to the closure of several automakers' facilities for a long time. Thus, the automotive supply chains are as important as the main automotive manufacturing facilities. Since these suppliers produce a lot of parts and supplies, the corresponding energy usage is also significant. The current research is focused on compressed air and process heating system analysis at one of the automotive parts manufacturer in Mexico.
Journal Article

Investigation of Relationship between System Efficiency Curve & Measurement and Verification (M&V) of Energy Savings

2011-04-12
2011-01-0324
This research attempts to investigate the effect of change in system curve on the energy intensity method of measurement and verification of energy savings. With recent push from US government on energy efficiency through EPACT 2007 and upturn in performance contracted energy efficiency project implementations the effective and accurate evaluation of energy savings as compared to the baseline is of paramount importance. The authors have studied different methods of Measurement and Verification (M&V) of energy savings from literature to compare and contrast and clearly bring out merits and de-merits of each. Finally, the role of production level variable plays in establishing the baseline energy usage is discussed. Though modern models proposed in the literature of determining baseline energy usage consider production level, this variable is compounded from two variables viz., time of usage of a system and fraction of total capacity usage.
Technical Paper

Innovative Design Concepts for Lightweight Floors in Heavy Trailers

2010-10-05
2010-01-2033
Currently, the chassis assembly contributes about 73 percent of the overall weight of a 14.63 m long haul trailer. This paper presents alternative design concepts for the structural floor of a van trailer utilizing sandwich panels with various material and geometric characteristics of the core layer in order to reduce its weight significantly below that of the current design configuration. The main objective of the new designs is to achieve optimal tradeoffs between the overall structural weight and the flexural stiffness of the floor. Various preliminary design concepts of the core designs were compared on the basis of a single section of the core structure. Six different designs were analyzed by weight, maximum displacement and maximum stress under bending and torsion loads. Each concept was kept uniform by length, thickness, loading and boundary conditions. Each design concept was examined through testing of scaled model for floor assemblies.
Technical Paper

Performance Evaluation of Metal Matrix Composites Bolted Joints

2010-10-05
2010-01-2036
Recent advances in Metal Matrix Composites have made them ready for transition to large-volume production and commercialization. Such new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel. The increasing requirements of weight savings and extended durability motivated the potential application of MMC technology into the heavy vehicle market. However, significant technical barriers such as joining are likely to hinder the broad applications of MMC materials in heavy vehicles. The focus of this paper is to examine the feasibility of manufacturing and the behavior of bolted joint connections made from aluminum matrix reinforced with Silicon Carbide (SiC) particles. Two reinforcement ratios: 20% and 45% were considered in this study. The first part of the paper concentrates on experimental evaluation of bolted MMC joints.
Technical Paper

Defining the Hybrid Drive System for the WVU ClearVue Crossover Sport Utility Vehicle

2010-04-12
2010-01-0841
West Virginia University (WVU) is a participant in EcoCAR - The NeXt Challenge, an Advanced Vehicle Technology Competition sponsored by the U.S. Department of Energy, and General Motors Corporation. During the first year of the competition, the goal of the WVU EcoEvolution Team was to design a novel hybrid-electric powertrain for a 2009 Saturn Vue to increase pump-to-wheels fuel economy, reduce criteria tailpipe emissions and well-to-wheels greenhouse gas emissions (GHG) while maintaining or improving performance and utility. To this end, WVU designed a 2-Mode split-parallel diesel-electric hybrid system. Key elements of the hybrid powertrain include a General Motors 1.3L SDE Turbo Diesel engine, a General Motors Corporation 2-Mode electrically variable transmission (EVT) and an A123 Systems Lithium-Ion battery system. The engine will be fueled on a blend of 20% soy-derived biodiesel and 80% petroleum-derived ultra-low sulfur diesel fuel (B20).
Technical Paper

Methods to Assess Jolting and Jarring Events: A Surface Mining Case Study to Evaluate the Jolt-Duration Method

2009-10-06
2009-01-2830
When operating a piece of heavy equipment, the equipment operator is exposed to Whole Body Vibration (WBV), with peaks in the acceleration called jolting and jarring. Various published consensus standards exist to analyze overall WBV, but a consensus standard does not exist for describing, detecting, and categorizing the jolting and jarring peaks. During previous research into methods of measuring jolting and jarring, a Root Mean Square (RMS) method was implemented and deployed in jolting and jarring event meters called Shox Boxes (invented by the National Institute for Occupational Safety and Health, NIOSH). The RMS assessment was difficult for end users of the Shox Boxes to utilize for describing and categorizing the peaks. This paper offers a hypothetical standard, the Jolt-Duration (JD) method, based on the simple amplitude and duration of the peaks, as well as the time between peaks.
Technical Paper

Development and Testing of a Tag-based Backup Warning System for Construction Equipment

2007-10-30
2007-01-4233
Incidents in which a piece of construction equipment backed into a worker resulted in an average of 17 deaths per year at road construction sites and 15 deaths per year at building construction sites from 1997 through 2001. This trend continues and researchers at the National Institute for Occupational Safety and Health are evaluating methods to decrease these incidents. A new technology based on the detection of electronic identification tags worn by workers has been developed and evaluated at a road construction site. The tag-based proximity warning system consists of a magnetic field generator and communications system that mounts on the back of a piece of construction equipment such as a dump truck, road grader, or loader. Workers at a construction site wear a small tag that detects the magnetic marker field.
Technical Paper

Mutagenic Potential of Particulate Matter from Diesel Engine Operation on Fischer-Tropsch Fuel as a Function of Engine Operating Conditions and Particle Size

2002-05-06
2002-01-1699
Further growth of diesel engines in the light-duty and heavy-duty vehicular market is closely linked to the potential health risks of diesel exhaust. The California Air Resources Board and the Office of Environmental Health Hazard Assessment have identified diesel exhaust as a toxic air contaminant. The International Agency for Research on Cancer concluded that diesel particulate is a probable human carcinogen [1]. Cleaner burning liquid fuels, such as those derived from natural gas via the Fischer-Tropsch (FT) process, offer a potentially economically viable alternative to standard diesel fuel while providing reduced particulate emissions. Further understanding of FT operation may be realized by investigating the differences in toxicity and potential health effects between particulate matter(PM) derived from FT fuel and that derived from standard Federal diesel No. 2 (DF).
Technical Paper

Development of A Microwave Assisted Regeneration System for A Ceramic Diesel Particulate System

1999-10-25
1999-01-3565
Specific aspects of a study aimed at developing a microwave assisted regeneration system for diesel particulate traps are discussed. Results from thermal and microwave characteristic studies carried out in the initial phase of the study are reported. The critical parameters that need to be optimized, for achieving controlled regeneration, are microwave preheating time period, regenerative air supply, regenerative air temperature, and soot deposition. Using a 1000 W magnetron, power measurements were made to select the best waveguide configuration for optimized transmission. A six cylinder naturally aspirated, indirect injection diesel engine was retrofitted with a customized exhaust system that included a Corning EX80 (5.66″ × 6.00″) type ceramic particulate trap. An automated exhaust bypass system enabled trap loading and subsequent regeneration with a customized microwave regeneration system. The paper discusses the salient details of both on-line and off-line regeneration setups.
Technical Paper

Contribution of Soot Contaminated Oils to Wear-Part II

1999-05-03
1999-01-1519
Diesel soot interacts with the engine oil and leads to wear of engine parts. Engine oil additives play a crucial role in preventing wear by forming the anti-wear film between the wearing surfaces. The current study was aimed at investigating the interactions between engine soot and oil properties in order to develop high performance oils for diesel engines equipped with exhaust gas re-circulation (EGR). The effect of soot contaminated oil on wear of engine components was examined using a statistically designed experiment. To quantitatively analyze and simulate the extent of wear a three-body wear machine was designed and developed. The qualitative wear analysis was performed by examining the wear scars on an AISI 52100 stainless steel ball worn in the presence of oil test samples on a ball-on-flat disc setup. The three oil properties studied were base stock, dispersant level and zinc dithiophosphate level.
Technical Paper

A Continuously Variable Power Split Transmission for Automotive Applications

1997-02-24
970687
Continuously variable transmissions, commonly known as CVT's, have been shown to be feasible alternatives to the conventional multi-step gear transmissions (standard or automatic) typically used in automotive applications. Most CVT applications, however, rely on a shaft-to-shaft transmission arrangement, in which the belt-sheave action limits the load capacity of the transmission, particularly at the high power ranges (low speed, high torque). In this paper, a system based on a combined planetary gear train and a continuously variable pulley system is presented. The uniqueness of this arrangement is that the variable pulleys provide a power/torque split and recirculation function, which, when combined with the planetary gear train function, produces a continuously variable power split transmission system.
Technical Paper

An Approach to Simulate Chassis Dynamometer Test Cycles with Engine Dynamometer Test Cycles for Heavy-Duty Urban Buses

1996-10-01
962196
A mathematical model has been developed to transfer Chassis Dynamometer (CD) test cycles for heavy duty vehicles to the equivalent Engine Dynamometer (ED) test cycles. The model assumed a generalized drivetrain layout, and a variable drive line efficiency. An interactive computer code was written to represent the mathematical model for different drivetrain systems. Several CD test cycles were used to obtain equivalent ED test cycles for a sample based upon an urban bus equipped with an automatic transmission. Results showed the possibility of simulating CD test cycles with equivalent ED test cycles for heavy-duty urban buses under certain assumptions.
Technical Paper

Speciation of Heavy Duty Diesel Exhaust Emissions under Steady State Operating Conditions

1996-10-01
962159
This paper presents results from a study on speciation of the emission profiles and on the ozone forming potential of heavy-duty diesel exhaust under steady state engine operation. Very limited attempts have been made at determining the ozone forming potential of heavy duty diesel exhaust emissions. In this study a proportional sample of the dilute exhaust was drawn from a CFV-CVS system using a temperature controlled sampling line. The particulate matter was collected on a 70 mm Teflon coated glass fiber filter (TX40HI20WW), the semi-volatiles on XAD-2 copolymer resin and volatiles in Tedlar bags. The samples were analyzed by gas chromatography after conditioning and chemical extractions. The initial phase of the study was directed towards developing techniques and establishing protocols to determine the ozone forming potential of heavy-duty diesel exhaust. A pre-chamber naturally aspirated engine was tested on steady-state modes 1, 3, 5, 7 and 8 of the ISO 8 mode cycle.
Technical Paper

Ideal Computer Analysis of a Novel Engine Concept

1996-02-01
960080
A novel engine concept, currently under study, addresses many of the problems commonly associated with conventional internal combustion engines. In its simplest form the novel engine consists of a single crankshaft operating both a piston compressor and a piston expander which are connected by a continuous flame combustion chamber. One might regard this as a Brayton piston engine which is similar to a previous engine investigated by Warren. Also, due to the use of piston cylinders as the compression and expansion devices, this engine varies little mechanically from current engine technology thus allowing for easy implementation. The main improvement from conventional engine design is that the expansion cylinder can have a larger displacement than that of the compression cylinder. This allows more power to be extracted by lowering the loss due to blowdown and this will increase the thermal efficiency.
Technical Paper

A Double Planetary Gear Train-CVT Transmission with Multiple Applications

1995-02-01
950094
A family of transmission systems based on a “Planetary Gear - CVT” mechanism is presented here. The systems considered consist of two compound planetary gear trains connected through a CVT pulley system to provide the power/torque split and recirculation function, without the use of additional clutches and/or chain drives. A two degree of freedom system results in which one of the degrees of freedom is directly related to the CVT ratio. The mechanisms considered here combine the gear reduction function of compound planetary gear trains with the continuously variable trans- used as a circulating power control unit. The kinematics and dynamics of this family of systems is presented with emphasis on the belt forces, torques on the various shafts and the overall input/output velocity ratios through the CVT ratio span. Then a parametric analysis is conducted to characterize the effect of the various functional ratios and parameters of the system in terms of the overall performance.
X