Refine Your Search



Search Results

Technical Paper

CFD Investigation of the Effects of Gas’ Methane Number on the Performance of a Heavy-Duty Natural-Gas Spark-Ignition Engine

Natural gas (NG) is an alternative fuel for spark-ignition engines. In addition to its cleaner combustion, recent breakthroughs in drilling technologies increased its availability and lowered its cost. NG consists of mostly methane, but it also contains heavier hydrocarbons and inert diluents, the levels of which vary substantially with geographical source, time of the year and treatments applied during production or transportation. To investigate the effects of NG composition on engine performance and emissions, a 3D CFD model of a heavy-duty diesel engine retrofitted to NG spark ignition simulated lean-combustion engine operation at low speed and medium load conditions. The work investigated three NG blends with similar lower heating value (i.e., similar energy density) but different Methane Number (MN). The results indicated that a lower MN increased flame propagation speed and thus increased in-cylinder pressure and indicated mean effective pressure.
Technical Paper

A Two-Step Combustion Model of Iso-Octane for 3D CFD Combustion Simulation in SI Engines

The application of Computational Fluid Dynamics (CFD) for three-dimensional (3D) combustion analysis coupled with detailed chemistry in engine development is hindered by its expensive computational cost. Chemistry computation may occupy as much as 90% of the total computational cost. In the present paper, a new two-step iso-octane combustion model was developed for spark-ignited (SI) engine to maximize computational efficiency while maintaining acceptable accuracy. Starting from the model constants of an existing global combustion model, the new model was developed using an approach based on sensitivity analysis to approximate the results of a reference skeletal mechanism. The present model involves only five species and two reactions and utilizes only one uniform set of model constants. The validation of the new model was performed using shock tube and real SI engine cases.
Technical Paper

Effect of Different Seat Pan Angles and Feet-Floor Interactions on Human Body Response Using a Biodynamic Model

In recent years, study on the ride comfort of vehicles has attracted wide attention. The vibration caused by the road is transmitted to the human body through the tire, suspension, vehicle body, and the seat. Since the human body is in contact with the seat and the vibration is transmitted directly to the human body through the seat, the seat pan angle plays an important role on the vibration response of the human body. Previous studies have explored the effects of different backrest designs on human vibration response, but ignored the effects of different seat pan angles. Therefore, this paper will use a human biodynamic model combined with a 6-DOF seat model to study the effect of seat pan angles and feet-floor interaction on human vibration response. Three cases are proposed: Case 1 has a seat pan angle 8°, Case 2 has a seat pan angle 13°, and Case 3 has a seat pan angle 17°.
Technical Paper

A Computational Study on Laminar Flame Propagation in Mixtures with Non-Zero Reaction Progress

Flame speed data reported in most literature are acquired in conventional apparatus such as the spherical combustion bomb and counterflow burner, and are limited to atmospheric pressure and ambient or slightly elevated unburnt temperatures. As such, these data bear little relevance to internal combustion engines and gas turbines, which operate under typical pressures of 10-50 bar and unburnt temperature up to 900K or higher. These elevated temperatures and pressures not only modify dominant flame chemistry, but more importantly, they inevitably facilitate pre-ignition reactions and hence can change the upstream thermodynamic and chemical conditions of a regular hot flame leading to modified flame properties. This study focuses on how auto-ignition chemistry affects flame propagation, especially in the negative-temperature coefficient (NTC) regime, where dimethyl ether (DME), n-heptane and iso-octane are chosen for study as typical fuels exhibiting low temperature chemistry (LTC).
Technical Paper

In-Plane Parameter Relationship between the 2D and 3D Flexible Ring Tire Models

In this paper, a detailed three dimensional (3D) flexible ring tire model is first proposed which includes a rigid rim with thickness, different layers of discretized belt points and a number of massless tread blocks attached on the belt. The parameters of the proposed 3D tire model can be divided into in-plane parameters and out-of-plane parameters. In this paper, the relationship of the in-plane parameters between the 3D tire model and the 2D tire model is determined according to the connections among the tire components. Based on the determined relationship, it is shown that the 3D tire model can produce almost the same prediction results as the 2D tire model for the in-plane tire behaviors.
Technical Paper

In-Plane Flexible Ring Tire Model Development for Ride Comfort & Braking/Driving Performance Analysis under Straight-line Driving Condition

Vehicle tire performance is an important consideration for vehicle handling, stability, mobility, and ride comfort as well as durability. Significant efforts have been dedicated to tire modeling in the past, but there is still room to improve its accuracy. In this study, a detailed in-plane flexible ring tire model is proposed, where the tire belt is discretized, and each discrete belt segment is considered as a rigid body attached to a number of parallel tread blocks. The mass of each belt segment is accumulated at its geometric center. To test the proposed in-plane tire model, a full-vehicle model is integrated with the tire model for simulation under a special driving scenario: acceleration from rest for a few seconds, then deceleration for a few seconds on a flat-level road, and finally constant velocity on a rough road. The simulation results indicate that the tire model is able to generate tire/road contact patch forces that yield reasonable vehicle dynamic responses.
Technical Paper

Optimal Seat Dynamic Parameters Determination for Minimizing Virtual Driver's Fatigue

In vehicle driving environment, the driver is subjected to the vibrations in horizontal, vertical, and fore-aft directions. The human body is very much sensitive to whole body vibration and this vibration transmission to the body depends upon various factors including road irregularities, vehicle suspension, vehicle dynamics, tires, seat design and the human body's properties. The seat design plays a vital role in the vibration isolation as it is directly in contact with human body. Vibration isolation properties of a seat depend upon its dynamic parameters which include spring stiffness and damping of seat suspension and cushion. In this paper, an optimization-based method is used to determine the optimal seat dynamic parameters for seat suspension, and cushion based on minimizing occupant's body fatigue (occupant body absorbed power). A 14-degree of freedom (DOF) multibody biodynamic human model in 2D is selected from literature to assess three types of seat arrangements.
Journal Article

Tire Model Application and Parameter Identification-A Literature Review

A tire may be one of the most critical and complex components in vehicle dynamics and road loads analyses because it serves as the only interface between the road surface and the vehicle. Extensive research and development activities about vehicle dynamics and tire models have been published in the past decades, but it is still not clear about the applications and parameter identification associated with all of these tire models. In this literature review study, various published tire models used for vehicle dynamics and road loads analyses are compared in terms of their modeling approaches, applications and parameters identification process and methodologies. It is hoped that the summary of this literature review work can help clarify and guide the future research and development direction about tire modeling.
Journal Article

Finite Element Analysis of Composite Over-wrapped Pressure Vessels for Hydrogen Storage

This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs. The optimal design configuration of such high pressure storage tanks includes an inner liner used as a gas permeation barrier, geometrically optimized domes, inlet/outlet valves with minimum stress concentrations, and directionally tailored exterior reinforcement for high strength and stiffness. Filament winding of pressure vessels made of fiber composite materials is the most efficient manufacturing method for such high pressure hydrogen storage tanks. The complexity of the filament winding process in the dome region is characterized by continually changing the fiber orientation angle and the local thickness of the wall.
Technical Paper

Innovative Dense Lightweight Design for On-Board Hydrogen Storage Tank

The hydrogen economy envisioned in the future requires safe and efficient means of storing hydrogen fuel for either use on-board vehicles, delivery on mobile transportation systems or high-volume storage in stationary systems. The main emphasis of this work is placed on the high -pressure storing of gaseous hydrogen on-board vehicles. As a result of its very low density, hydrogen gas has to be stored under very high pressure, ranging from 350 to 700 bars for current systems, in order to achieve practical levels of energy density in terms of the amount of energy that can be stored in a tank of a given volume. This paper presents 3D finite element analysis performed for a composite cylindrical tank made of 6061-aluminum liner overwrapped with carbon fibers subjected to a burst internal pressure of 1610 bars. As the service pressure expected in these tanks is 700 bars, a factor of safety of 2.3 is kept the same for all designs.
Technical Paper

Formulation of Human Performance Measures for Full Body Pregnant Women Standing Posture Prediction

Digital human modeling and posture prediction can only be used as a design tool if the predicted postures are realistic. To date, the most realistic postures have been realized by simultaneously optimizing human performance measures (HPMs). These HPMs currently consist of joint discomfort, delta potential energy, and visual displacement. However these HPMs only consider the kinematics of human posture. Dynamic aspects of human posture such as external loads and mass of limbs have not yet been considered in conjunction with the current HPMs. This paper gives the formulation for a new human performance measure combination including the use of joint torque to account for the dynamics of human posture. Postures are then predicted using multi-objective optimization (MOO) techniques to optimize the combination of the new HPM and the current. The predicted postures are then compared with the benchmark postures which are those obtained from using the current HPMs only.
Technical Paper

Innovative Design Concepts for Lightweight Floors in Heavy Trailers

Currently, the chassis assembly contributes about 73 percent of the overall weight of a 14.63 m long haul trailer. This paper presents alternative design concepts for the structural floor of a van trailer utilizing sandwich panels with various material and geometric characteristics of the core layer in order to reduce its weight significantly below that of the current design configuration. The main objective of the new designs is to achieve optimal tradeoffs between the overall structural weight and the flexural stiffness of the floor. Various preliminary design concepts of the core designs were compared on the basis of a single section of the core structure. Six different designs were analyzed by weight, maximum displacement and maximum stress under bending and torsion loads. Each concept was kept uniform by length, thickness, loading and boundary conditions. Each design concept was examined through testing of scaled model for floor assemblies.
Technical Paper

Performance Evaluation of Metal Matrix Composites Bolted Joints

Recent advances in Metal Matrix Composites have made them ready for transition to large-volume production and commercialization. Such new materials seem to allow the fabrication of higher quality parts at less than 50 percent of the weight as compared to steel. The increasing requirements of weight savings and extended durability motivated the potential application of MMC technology into the heavy vehicle market. However, significant technical barriers such as joining are likely to hinder the broad applications of MMC materials in heavy vehicles. The focus of this paper is to examine the feasibility of manufacturing and the behavior of bolted joint connections made from aluminum matrix reinforced with Silicon Carbide (SiC) particles. Two reinforcement ratios: 20% and 45% were considered in this study. The first part of the paper concentrates on experimental evaluation of bolted MMC joints.
Technical Paper

Methods to Assess Jolting and Jarring Events: A Surface Mining Case Study to Evaluate the Jolt-Duration Method

When operating a piece of heavy equipment, the equipment operator is exposed to Whole Body Vibration (WBV), with peaks in the acceleration called jolting and jarring. Various published consensus standards exist to analyze overall WBV, but a consensus standard does not exist for describing, detecting, and categorizing the jolting and jarring peaks. During previous research into methods of measuring jolting and jarring, a Root Mean Square (RMS) method was implemented and deployed in jolting and jarring event meters called Shox Boxes (invented by the National Institute for Occupational Safety and Health, NIOSH). The RMS assessment was difficult for end users of the Shox Boxes to utilize for describing and categorizing the peaks. This paper offers a hypothetical standard, the Jolt-Duration (JD) method, based on the simple amplitude and duration of the peaks, as well as the time between peaks.
Technical Paper

An Optimum Biological Reactor Configuration for Water Recycling in Space

Biological pre-treatment of early planetary/lunar base wastewater has been extensively studied because of its predicted ability to offer equivalent system mass (ESM) savings for long term space habitation. Numerous biological systems and reactor types have been developed and tested for treatment of the generally unique waste streams associated with space exploration. In general, all systems have been designed to reduce organic carbon (OC) and convert organic nitrogen (ON) to nitrate and/or nitrite (NOx -). Some systems have also included removal of the oxidized N in order to reduce overall oxygen consumption and produce additional N2 gas for cabin use. Removal of organic carbon will generally reduce biofouling as well as reduce energy and consumable cost for physiochemical processors.
Technical Paper

Finite Element Analysis for the Interface of a Respirator and the Human Face -A Pilot Study

Comfort assessment of respirator fit plays an important role in the respirator design process and standard development. To reduce the cost and design time of respirators, the design, fit, and evaluation process can be performed in a virtual environment. Literature shows that respirator-induced discomfort relates to stress, area, and region of the face covered. In this work, we investigate the relationship between the strap tensions and the stress and deformation distribution on the interface between the respirator and the headform. This is the first step towards a comprehensive understanding of the contribution of contact stress to the mathematical comfort fit model. The 3D digital models for respirators and headforms have been developed based on 3D scanning point-cloud using a Cyberware® 3D digitizer. Five digital headform models have been generated: small, medium, large, long and short.
Technical Paper

Selenium Coating of Water Distribution Tubing to Inhibit Biofilm

Microbial control in closed environmental systems, such as those of spacecraft or proposed base missions is typically limited to disinfection in the potable water system by a strong chemical agent such as iodine or chlorine. However, biofilm growth in the environmental system tubing threatens both the sterility of the potable water distribution as well as operational problems with wastewater systems. In terrestrial systems, biofilm has been recognized for its difficulty to control and eliminate as well as resulting operational problems. In order to maintain a potable water source for crew members as well as preventing operational problems in non-sterile systems, biofilm needs to be considered during system design. While biofilm controls can limit biofilm buildup, they are typically disruptive and cannot completely eliminate biofilm. Selenium coatings have shown to prevent initial biofilm attachment as well as limit attached growth on a variety of materials.
Journal Article

The Analysis of a Modified Membrane-Aerated Biofilm Reactor for Space Flight Applications

A modified membrane-aerated biofilm reactor (mMABR) was constructed by incorporating two distinct biofilm immobilization media: gas-permeable hollow fiber membranes and high surface area inert bio-media. In order to evaluate the mMABR for space flight applications, a synthetic ersatz early planetary base (EPB) waste stream was supplied as influent to the reactor, and a liquid loading study was conducted at three influent flow rates. On average, percent carbon removal ranged from 90.7% to 93.1% with volumetric conversion rates ranging from 25 ± 3.3 g / m3 d and 95 ± 13.4 g / m3 d. Simultaneous nitrification/denitrification (SND) was achieved in a single reactor. As the liquid loading rate increased from 0.15 mL/min to 0.45 mL/min, the volumetric denitrification rates elevated from 27 ± 3.3 g / m3 d to 65 ± 5.2 g / m3 d. Additionally, it was found that nitrification and denitrification were linearly related with respect to both percent efficiency and volumetric reaction rates.
Technical Paper

A New Approach to Developing Digital 3-D Headforms

Facial measurements were collected during the 2003 National Institute for Occupational Safety and Health (NIOSH) survey of 3,997 respirator users. In addition to traditional measuring techniques, 1013 subjects were scanned with a Cyberware 3-D Rapid Digitizer. Ten facial dimensions relevant to respirator fit were chosen for defining a principal component analysis (PCA) model which divides the user population into five face-size categories. Mean facial dimensions were then computed as a goal for a representative headform for each size category and used to identify 5 scans in each category. An average of the five scanned subjects was used to develop a single standard headform for each face-size category. Four digital 3-D models were developed: small, medium, large, and long. The new headforms include facial features not found on current standard headforms.
Technical Paper

Digital Human Modeling Goals and Strategic Plans

Digital human modeling (DHM) progress worldwide will be much faster and cohesive if the diverse community now developing simulations has a global blueprint for DHM, and is able to work together efficiently. DHM developers and users can save time by building on each other's work. This paper highlights a panel discussion on DHM goals and strategic plans for the next decade to begin formulating the international blueprint. Four subjects are chosen as the starting points: (1) moving DHM into the public safety and internet arenas, (2) role of DHM in computer assisted surgery and automotive safety, (3) DHM in defense applications, and (4) DHM to improve workplace ergonomics.