Refine Your Search

Search Results

Viewing 1 to 4 of 4
Technical Paper

Design of a SiC Based Variable Voltage Converter for Hybrid Electric Vehicle

2019-04-02
2019-01-0605
Variable Voltage Converter (VVC) is adopted in Power-Split structure of hybrid electric vehicles (HEVs) to optimize the Electric-Drive (e-Drive) system performance. With the wider availability of Silicon Carbide (SiC) power semiconductor for automotive applications, there are new opportunities to further optimize and improve performance of VVC, e.g. lower power loss, smaller size, and lighter weight, comparing to use traditional Silicon (Si) IGBT and diode. In this paper, a SiC based VVC is designed, prototyped, and evaluated. In order to maximize the benefits of SiC power devices in VVC application, each key component is carefully designed and selected, including SiC power module, power capacitor, and power inductor. The characterization and evaluation results demonstrate the benefits of advanced SiC devices in VVC design optimization, and such benefits quantified in this paper.
Technical Paper

Enhanced Gate Driver with Variable Turn On and Turn Off Speeds

2019-04-02
2019-01-0608
Insulated Gate Bipolar Transistors (IGBT) are widely used for the vehicle traction inverter. Switching characteristics of these devices contribute to the inverter total loss and inverter efficiency is affected by the energy loss during each switching event. Traditional gate driver circuits are usually designed to meet the worst-case scenario and result is high switching loss of the IGBTs. Gate driver turn on and turn off resistances are selected accordingly for the worst-case scenario and their purpose is to protect the device from overshoot voltage that can cause the avalanche breakdown of the device. The gate charge and discharge circuit is usually composed of one or two resistors and the loss during turn-on and turn-off time is not optimized for all of the vehicle-operating conditions. Since microprocessor (μP) monitors the dc-bus voltage, output current and torque command, it can also determine if the device switching speed needs to be changed under different operating conditions.
Technical Paper

Power Module Design Verification for xEV Application Under Extreme Conditions

2017-03-28
2017-01-1246
Power modules play a key role in traction inverters for vehicle electrification applications. The harsh automotive operating environment is a big challenge for power modules. The paper highlights the challenges for power modules usage in electrified vehicles (xEVs), and proposes a design verification procedure for such application in order to ensure the reliable operation under all conditions. First, power modules operate in all climate zones and are exposed to a wide ambient temperature range underhood from -40°C to 105°C. A typical automotive power module should therefore withstand a junction temperature from -40°C to up to 175°C without exceeding its safe operating area (SOA), e.g. avalanche breakdown voltage, maximum current, and thermal limit. Second, an inductive induced high voltage spike could be generated during the power semiconductor fast switching at high voltage and high current conditions.
Technical Paper

Switching Frequency Optimization of Boost Converter for HEV Applications

2017-03-28
2017-01-1236
A hybrid electric vehicle (HEV) can utilize the electromechanical path to optimize the ICE operation and implement the regenerative brake, the fuel economy of a vehicle therefore gets improved significantly. Bi-directional Boost converter is usually used in an electric drive system to boost the high voltage (HV) battery voltage to a higher dc-link voltage. The main advantages for a system with Boost converter is that the traction inverter is de-coupled from battery voltage variations causing it to be over-sized. When designing this Boost converter, the switching frequency is a key parameter for the converter design. Higher switching frequency will lead to higher switching loss of power device (IGBT +diode), moreover, it has significant impact on inductor ripple current, HV battery ripple current and input capacitor current. Therefore, the switching frequency is one of the most important parameters for the design and selection of both active and passive components.
X