Refine Your Search

Search Results

Viewing 1 to 7 of 7
Technical Paper

Developing a Real-World, Second-by-Second Driving Cycle Database through Public Vehicle Trip Surveys

2019-07-08
2019-01-5074
Real-world second-by-second vehicle driving cycle data is very important for vehicle research and development. A project solely dedicated to generating such information would be tremendously costly and time consuming. Alternatively, we developed such a database by utilizing two publicly available passenger vehicle travel surveys: 2004-2006 Puget Sound Regional Council (PSRC) Travel Survey and 2011 Atlanta Regional Commission (ARC) Travel Survey. The surveys complement each other - the former is in low time resolution but covers driver operation for over one year whereas the latter is in high time resolution but represents only one-week-long driving operation. After analyzing the PSRC survey, we chose 382 vehicles, each of which continuously operated for one year, and matched their trips to all the ARC trips. The matching is carried out based on trip distance first, then on average speed, and finally on duration.
Technical Paper

Utilizing Public Vehicle Travel Survey Data Sets for Vehicle Driving Pattern and Fuel Economy Studies

2017-03-28
2017-01-0232
Realistic vehicle fuel economy studies require real-world vehicle driving behavior data along with various factors affecting the fuel consumption. Such studies require data with various vehicles usages for prolonged periods of time. A project dedicated to collecting such data is an enormous and costly undertaking. Alternatively, we propose to utilize two publicly available vehicle travel survey data sets. One is Puget Sound Travel Survey collected using GPS devices in 484 vehicles between 2004 and 2006. Over 750,000 trips were recorded with a 10-second time resolution. The data were obtained to study travel behavior changes in response to time-and-location-variable road tolling. The other is Atlanta Regional Commission Travel Survey conducted for a comprehensive study of the demographic and travel behavior characteristics of residents within the study area.
Technical Paper

Changing Habits to Improve Fuel Economy

2017-03-28
2017-01-0038
In recent years we have witnessed increased discrepancy between fuel economy numbers reported in accordance with EPA testing procedures and real world fuel economy reported by drivers. The debates range from needs for new testing procedures to the fact that driver complaints create one-sided distribution; drivers that get better fuel economy do not complain about the fuel economy, but only the ones whose fuel economy falls short of expectations. In this paper, we demonstrate fuel economy improvements that can be obtained if the driver is properly sophisticated in the skill of driving. Implementation of SmartGauge with EcoGuide into the Ford C-MAX Hybrid in 2013 helped drivers improve their fuel economy on hybrid vehicles. Further development of this idea led to the EcoCoach that would be implemented into all future Ford vehicles.
Technical Paper

GreenZone Driving for Plug In Hybrid Electric Vehicles

2012-04-16
2012-01-1004
Plugin Hybrid Electric Vehicles (PHEV) have a large battery which can be used for electric only powertrain operation. The control system in a PHEV must decide how to spend the energy stored in the battery. In this paper, we will present a prototype implementation of a PHEV control system which saves energy for electric operation in pre-defined geographic areas, so called Green Zones. The approach determines where the driver will be going and then compares the route to a database of predefined Green Zones. The control system then reserves enough energy to be able to drive the Green Zone sections in electric only mode. Finally, the powertrain operation is modified once the vehicle enters the Green Zone to ensure engine operation is limited. Data will be presented from a prototype implementation in a Ford Escape PHEV
Technical Paper

Power Control for the Escape and Mariner Hybrids

2007-04-16
2007-01-0282
Ford Motor Company has developed a full hybrid electric vehicle with a power-split hybrid powertrain. There are constraints imposed by the high voltage system in such an HEV, that do not exist in conventional vehicles. A significant controls problem that was addressed in the Ford Escape and Mercury Mariner Hybrids was the determination of the desired powertrain operating point such that the vehicle attributes of fuel economy, performance and drivability are met, while satisfying these new constraints. This paper describes the control system that addressed this problem and the tests that were designed to verify its operation.
Technical Paper

Integrated Modeling Environment for Detailed Algorithm Design, Simulation and Code Generation

2007-04-16
2007-01-0274
Ford Motor Company has developed an Integrated Modeling Environment (IME) for hybrid electric vehicle (HEV) control system development. This paper presents the Integrated Modeling Environment which facilitates the design and development methodology for the production control algorithms to seamlessly move from simulation to the embedded microcontroller environment. The IME encompasses requirement management, system analysis and verification testing at multiple levels of the Systems Engineering V. In addition, the application of this environment for developing HEV control system (production algorithms and code) is also presented.
Technical Paper

Improving the Efficiency of Production Level Algorithm Development for an SUV HEV Powertrain

2004-10-25
2004-01-3039
Recent events in the world have refocused auto manufacturers to design and produce more fuel efficient and environmentally friendly vehicles. One method to improve the fuel efficiency of vehicles is the hybridization of the vehicle's powertrain. Ford Motor Company is developing a hybrid electric powertrain for the Escape SUV. To quickly develop a control system to smoothly manage two propulsion systems as if it were a conventional powertrain is a difficult challenge. To meet that challenge, extensive use of Computer Aided Engineering simulation and analysis is necessary to quickly design, develop and verify control algorithms ready for production. This paper will present the design and development methodology for the production control algorithms to seamlessly move from the simulation environment to the embedded microcontroller.
X