Refine Your Search

Search Results

Viewing 1 to 3 of 3
Technical Paper

PHEV Real World Driving Cycle Energy and Fuel and Consumption Reduction Potential for Connected and Automated Vehicles

2019-04-02
2019-01-0307
This paper presents real-world driving energy and fuel consumption results for the second-generation Chevrolet Volt plug-in hybrid electric vehicle (PHEV). A drive cycle, local to Michigan Technological University, was designed to mimic urban and highway driving test cycles in terms of distance, transients and average velocity, but with significant elevation changes to establish an energy intensive real-world driving cycle for assessing potential energy savings for connected and automated vehicle (CAV) control. The investigation began by establishing baseline and repeatability of energy consumption at various battery states of charge. It was determined that drive cycle energy consumption under a randomized set of boundary conditions varied within 3.6% of mean energy consumption regardless of initial battery state of charge.
Technical Paper

Route-Optimized Energy Management of Connected and Automated Multi-Mode Plug-In Hybrid Electric Vehicle Using Dynamic Programming

2019-04-02
2019-01-1209
This paper presents a methodology to optimize the blending of charge-depleting (CD) and charge-sustaining (CS) modes in a multi-mode plug-in hybrid electric vehicle (PHEV) that reduces overall energy consumption when the selected route cannot be completely driven in all-electric mode. The PHEV used in this investigation is the second-generation Chevrolet Volt and as many as four instrumented vehicles were utilized simultaneously on road to acquire validation data. The optimization method used is dynamic programming (DP) paired with a reduced-order powertrain model to enable onboard embedded controller compatibility and computational efficiency in optimally blending CD, CS modes over the entire drive route.
Technical Paper

Computationally Efficient Reduced-Order Powertrain Model of a Multi-Mode Plug-In Hybrid Electric Vehicle for Connected and Automated Vehicles

2019-04-02
2019-01-1210
This paper presents the development of a reduced-order powertrain model for energy and SOC estimation of a multi-mode plug-in hybrid electric vehicle using only vehicle speed profile and route elevation as inputs. Such a model is intended to overcome the computational inefficiencies of higher fidelity powertrain and vehicle models in short and long horizon energy optimization efforts such as Coordinated Adaptive Cruise Control (CACC), Eco Approach and Departure (EcoAND), Eco Routing, and PHEV mode blending. The reduced-order powertrain model enables Connected and Automated Vehicles (CAVs) to utilize the onboard sensor and connected data to quickly react and plan their maneuvers to highly dynamic road conditions with minimal computational resources.
X