Refine Your Search

Topic

Search Results

Standard

Aviator's Breathing Oxygen Purity Standard

2023-08-23
CURRENT
AS8010D
This document defines the minimum degree of purity and maximum levels of certain deleterious impurities allowable for aviator's breathing oxygen at the point of manufacture or generation. It covers gaseous, liquid, and chemically generated oxygen, and oxygen supplied by in situ concentration and in situ electrolysis. Different limits are established for oxygen from different sources, in recognition of differences in the ways the oxygen is stored, dispensed, and utilized, taking into account the safety of the user. These limits are not intended to specifically reflect upon the relative capabilities or merits of various technologies. Procurement documents may specify more stringent limits, where required for specific applications. Medical oxygen is not covered by this standard. In the United States, medical oxygen is a prescription drug and complies with the United States Pharmacopoeia (USP).
Standard

Protective Breathing Equipment for Flight Deck and Cabin Crew Members

2023-01-26
CURRENT
AIR825/10A
This SAE Aerospace Information Report (AIR) provides general information to aircraft engineers, regarding the types of Protective Breathing Equipment (PBE) configurations which are available, the intended functions of such equipment, and the technical approaches which may be used in accomplishing these functions. The term "PBE" or "Protective Breathing Equipment" has been used to refer to various types of equipment, which are used in a variety of applications. This way of using the terminology has been a source of confusion in the aviation industry. One objective of this AIR is to assist the reader in distinguishing between the types of PBE applications. A further objective is to assist in understanding the technical approaches which can be used in each of the major applications. Principles of PBE design are reviewed briefly.
Standard

Closed-Cycle Protective Breathing Devices

2023-01-26
CURRENT
AIR825/11A
Closed-cycle protective breathing apparatus, commonly referred to as rebreathers, or CCBA provide trained aircrew members or ground personnel with eye and respiratory protection from toxic atmospheres.
Standard

FAR - Regulatory Requirements Covering the Use of Breathing Oxygen in Aircraft

2022-06-27
CURRENT
AIR1389C
This report presents, paraphrased in tabular format, an overview of the Federal Aviation Regulations (FAR) for aircraft oxygen systems. It is intended as a ready reference for those considering the use of oxygen in aircraft and those wishing to familiarize themselves with the systems requirements for existing aircraft. This document is not intended to replace the oxygen related FAR but rather to index them in some order. For detailed information, the user is referred to the current issue of the relevant FAR paragraph referenced in this report.
Standard

Oxygen Considerations for High Elevation Airport Operations (HEAO)

2021-08-26
CURRENT
AIR6829
This document covers information concerning the use of oxygen when flying into and out of high elevation airports for both pressurized and non-pressurized aircraft. Oxygen requirements for pressurized aircraft operating at high altitudes have for decades emphasized the potential failures that could lead to a loss of cabin pressurization coupled with the potential severe hypoxic hazard that decompressions represent. This document is intended to address the case where the relationship between cabin and ambient pressures are complicated by operations at high terrestrial altitudes. Operators who fly into these high-altitude airports should address the issues related to this environment because it carries the potential for insidious hypoxia and other conditions which can affect safety. It provides information to consider in developing operational procedures to address hypoxia concerns consistent with regulatory mandates.
Standard

Metabolic Simulator Testing Systems for Aviation Breathing Equipment

2021-08-11
CURRENT
ARP4259A
This Aerospace Recommended Practice (ARP) describes test equipment and methods used for testing closed cycle or semiclosed cycle breathing devices of short duration that are designed to operate with a high partial pressure of oxygen in the breathing circuit. It is intended to supplement ARP1109 and ARP1398 for applications involving closed cycle or semiclosed cycle breathing equipment which may be evaluated to the requirements of AS8031 and/or AS8047.
Standard

Minimum Standard for Portable Gaseous, Oxygen Equipment

2021-08-11
CURRENT
AS1046C
This standard is intended to apply to portable compressed gaseous oxygen equipment. When properly configured, this equipment is used either for the administration of supplemental oxygen, first aid oxygen or smoke protection to one or more occupants of either private or commercial transport aircraft. This standard is applicable to the following types of portable oxygen equipment: a Continuous flow 1 Pre-set 2 Adjustable 3 Automatic b Demand flow 1 Straight-demand 2 Diluter-demand 3 Pressure-demand c Combination continuous flow and demand flow.
Standard

Oxygen Sensor Technologies

2020-12-18
CURRENT
AIR5933
AIR5933 provides an overview of contemporary technologies (i.e., sensors) that measure the proportion of oxygen in a gas. The use of these sensors in the aerospace environment, with its special constraints, is discussed and papers/reports with detailed information are summarized and referenced. The sensors are divided into expendable and non-expendable sensors. Expendable sensors are based on electrochemical properties, whereas non-expendable sensors rely on paramagnetic, photo-acoustic, electromagnetic, and laser spectroscopy properties.
Standard

Oxygen System and Component Cleaning

2020-10-19
CURRENT
ARP1176B
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for the cleaning of aircraft oxygen equipment, both metallic and non-metallic articles, such as oxygen lines (tubes, hoses, etc.), components (including regulator and valve parts), cylinders, and ground-based equipment that may be used to support aircraft oxygen systems. This document also specifies work area details, methods for selecting suitable cleaning agents, cleaning methods, and test methods for verifying levels of cleanliness. The cleanliness coding scheme specified in this document provides a method for documenting minimum cleanliness level requirements and for identifying compliance.
Standard

Personal Protective Devices for Toxic and Irritating Atmospheres Air Transport Flight Deck (Sedentary) Crewmembers

2020-09-03
WIP
AS8031B
This SAE Aerospace Standard (AS) covers any protection system that serves the stated purpose. This document establishes minimum performance requirements for emergency equipment, which provides flight deck (sedentary) crewmembers with eye and respiratory protection from toxic atmospheres during in-flight emergencies. Defintion of sedentary: "sedentary" is herein defined as those flight deck crewmembers that remain seated at their flight deck stations throughout the emergency. For those "nonsedentary" cabin crewmembers whose duty it is to leave their flight station during an emergency (for example, to actively locate and fight an on-board fire).
Standard

Crewmember Demand Oxygen Mask for Transport Category Aircraft

2019-08-14
CURRENT
AS8026B
This standard covers oxygen masks and breathing valves used with both panel mounted and mask mounted demand and pressure-demand oxygen regulators. Mask mounted oxygen regulators are covered under other standards, but when the mask mounted regulator incorporates an integral exhalation valve, the performance of this valve shall meet the requirements of this standard.
Standard

Oxygen Cylinder Installation Guide

2019-04-11
CURRENT
ARP5021B
This document provides guidance for oxygen cylinder installation on commerical aircraft based on airworthiness requirements, and methods practiced within aerospace industry. It covers considerations for oxygen systems from beginning of project phase up to production, maintenance, and servicing. The document is related to requirements of DOT-approved oxygen cylinders, as well to those designed and manufactured to standards of ISO 11119. However, its basic rules may also be applicable to new development pertaining to use of such equipment in an oxygen environment. For information regarding oxygen cylinders itself, also refer to AIR825/12.
Standard

Fuel Versus Oxygen: Evaluations and Considerations

2018-10-18
CURRENT
AIR5648A
Specific federal aviation regulations (Titled 14 of the United States Code of Federal Regulations, or 14 CFR) define oxygen system requirements for an in-flight decompression incident. This AIR addresses the operational oxygen system requirements for a decompression incident that may occur at any point during a long-range flight, with an emphasis for a decompression at the equal time point (ETP). This AIR identifies fuel and oxygen management contingencies, and presents possible solutions for the efficient, safe, and optimum fuel/oxygen flight continuation. Oxygen management is a concern to all aircraft, such as single engine types that fly above 10 000 feet and use supplemental oxygen. This document provides a method which can help guide users in developing an oxygen solution for their aircraft.
Standard

Oxygen System and Component Cleaning

2018-10-18
HISTORICAL
ARP1176A
This SAE Aerospace Recommended Practice (ARP) provides recommended practices for cleaning aircraft oxygen equipment such as tubing, pieces, parts (including regulator and valve parts), cylinders and ground-based equipment that may be used to support aircraft oxygen systems. This revision introduces a cleanliness coding scheme that can be referenced as a requirement, and/or referenced to identify compliance to meeting such a requirement. These methods may apply to gaseous and liquid oxygen equipment. This document specifies work area details, methods to select suitable cleaning agents, cleaning methods, test methods to verify cleanliness level, and methods of packaging the components and parts after cleaning. Technicians designated to clean oxygen equipment must be qualified and trained to clean oxygen equipment. This ARP is applicable to metallic and non-metallic parts.
Standard

Provisions of Medical Oxygen for Aircraft Occupants

2017-11-07
CURRENT
AIR6190
This document provides information on provisions for passengers with disabilities on board commercial aircraft. In this context the term "provision of medical oxygen" shall be understood as application of oxygen on board an aircraft not linked to (post) decompression in the sense of Airworthiness Requirements FAR/CS 25 and Operational Regulations of FAR 121/135. Information about available equipment and physiological treatment in clinical practice will be provided in this document. It covers the use of oxygen concentrators according to guidance of FAR Advisory Circular AC120-95.
Standard

Carry-On Portable Oxygen Concentrators

2017-11-07
CURRENT
AS8059
This SAE Aerospace Standard (AS) applies to a personal, portable oxygen concentrator (POC) to be supplied and used by a passenger requiring supplemental oxygen therapy while traveling on board civil, commercial, or personal aircraft. It covers a POC during both self-powered battery operation and while powered from an aircraft seat’s electrical power through the use of an accessory adapter. The POC is not intended to be connected to the aircraft’s oxygen systems or to be used by any aircraft personnel in any method of treatment or first aid of the general flying public.
Standard

Effects of Acute Altitude Exposure in Humans: Requirements for Physiological Protection

2017-11-07
HISTORICAL
AIR825/2
The intent of this SAE Aerospace Information Report (AIR) is to describe the effects of the environmental changes on human physiology and the protection required to avoid negative consequences resulting from altitude exposure. A brief presentation of basic terms and considerations required to discuss the topic of human physiology at altitude are followed by an overview of the cardiovascular and respiratory systems. Issues specifically related to human exposure to altitude are then discussed.
X