Refine Your Search

Topic

Search Results

Standard

Gland Design: Nominal 3/8 Inch Cross Section for Compression-Type Seals

2019-06-17
CURRENT
AS4832A
This SAE Aerospace Standard (AS) offers gland details for a 0.364 inch (9.246 mm) cross-section gland (nominal 3/8 inch) with proposed gland lengths for compression-type seals with two backup rings over a range of 7 to 21 inches (178 to 533 mm) in diameter. The dash number system used is similar to AS568A. A 600 series has been chosen as a logical extension of AS568A, and the 625 number has been selected for the initial number, since 300 and 400 series in MIL-G-5514 and AS4716 begin with 325 and 425 sizes. Seal configurations and design are not a part of this document. This gland is for use with compression-type seals including, but not limited to, O-rings, T-rings, D-rings, cap seals, etc.
Standard

Landing Gear Common Repair

2019-04-11
CURRENT
AIR5885A
This document outlines the most common repairs used on landing gear components. It is not the intention of this AIR to replace overhaul/component maintenance or technical order manuals, but it can serve as a guide into their preparation. Refer to the applicable component drawings and specifications for surface finish, thickness, and repair processing requirements. This document may also be used as a guide to develop an MRB (Material Review Board) plan. The repairs in this document apply to components made of metallic alloys. These repairs are intended for new manufactured components and overhauled components, including original equipment manufacturer (OEM)/depot and in-service repairs. The extent of repair allowed for new components as opposed to in-service components is left to the cognizant engineering authorities. Reference could be made to this document when justifying repairs on landing gears. For repairs outside the scope of this document, a detailed justification is necessary.
Standard

Landing Gear Servicing

2018-07-03
CURRENT
ARP5908A
The present document addresses gas and hydraulic fluid servicing required on commercial and military aircraft landing gears, for both single and dual chamber (also known as dual stage and two stage) shock struts. This document should be considered as landing gear industry recommended practice but in no way is meant to supersede the shock strut OEM’s published procedures.
Standard

Landing Gear Component Heat Damage

2018-07-02
CURRENT
AIR5913A
The purpose of this report is to outline types of in-service heat damage that have been observed in high strength steel landing gear components, with an emphasis on a particular type that is referred to as “Ladder Cracking” which can develop in landing gear shock struts. The report discusses how ladder cracking can be detected visually and evaluated by non-destructive inspection methods, and how it can be repaired at overhaul with the prior approval of the Original Equipment Manufacturer. This report also describes the use of a bearing material that has resolved this problem without introducing other problems. Examples of other types of service induced heat damage are also discussed.
Standard

Plain Bearing Selection for Landing Gear Applications

2018-04-18
CURRENT
AIR1594D
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

Historical Design Information of Aircraft Landing Gear and Control Actuation Systems

2017-07-10
CURRENT
AIR5565
This aerospace information report (AIR) provides historical design information for various aircraft landing gear and actuation/control systems that may be useful in the design of future systems for similar applications. It presents the basic characteristics, hardware descriptions, functional schematics, and discussions of the actuation mechanisms, controls, and alternate release systems. The report is divided into two basic sections: 1 Landing gear actuation system history from 1876 to the present. This section provides an overview and the defining examples that demonstrate the evolution of landing gear actuation systems to the present day. 2 This section of the report provides an in depth review of various aircraft. A summary table of aircraft detail contained within this section is provided in paragraph 4.1. The intent is to add new and old aircraft retraction/extension systems to this AIR as the data becomes available.
Standard

Design Recommendations for Spare Seals in Landing Gear Shock Struts

2017-06-09
CURRENT
ARP4912C
This SAE Aerospace Recommended Practice (ARP) provides recommendations on cavity design, the installation of elastomer type spare seals in these cavities, and information surrounding elastomer material properties after contact with typical shock absorber hydraulic fluid(s) or grease. This ARP is primarily concerned with the use of spare seals on shock absorbers where only a single dynamic seal is fitted and in contact with the slider/shock absorber piston at any one time. These shock absorbers typically have a spare (dynamic) seal gland located on the outer diameter of the lower seal carrier. This spare seal gland is intended to house a spare elastomer contact seal. Split Polytetrafluoroethylene (PTFE) backup rings can also be installed in the spare seal cavity. During operation, if the fitted dynamic shock absorber standard seal begins to fail/leak, then the aircraft can be jacked up, allowing the lower gland nut of the shock absorber to be dropped down.
Standard

Guide for Installation of Electrical Wire and Cable on Aircraft Landing Gear

2015-07-04
CURRENT
AIR4004A
Recent field experience has indicated significant problems with some types of wire and cables as routed on aircraft landing gear. This SAE Aerospace Information Report (AIR) is intended to identify environmental concerns the designer should consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications. In recent years aircraft certification regulatory agencies introduced new regulations regarding Electrical Wiring Interconnection Systems (EWIS) to further enhance safety of the associated systems and aircraft overall.
Standard

Recommended Actions When Disinfectants, De-icers, and Cleaners Come in Contact with Landing Gear Structure

2012-10-03
CURRENT
AIR5541A
This SAE Aerospace Information Report (AIR) advises that some of the chemicals being used to disinfect, de-ice, and clean airplanes can cause corrosion and/or degradation of landing gear components. Landing gear equipment includes shock struts, braces, actuators, wheels, brakes, tires, and electrical components. Some of the chemicals that have been recognized as potentially injurious are identified and recommendations for mitigating damage are presented.
Standard

Landing Gear Structural Requirements as Listed in the MIL-886X Series of Specifications

2012-10-03
CURRENT
AS8860A
This specification contains landing gear strength and rigidity requirements, which, in combination with other applicable specifications, define the structural design, analysis, test, and data requirements for fixed wing piloted airplanes. These requirements include, but are not limited to the following: a General Specifications 1 The shock-absorption characteristics and strength of landing-gear units and the strength and rigidity of their control systems and of their carry-through structures.
Standard

Disposition of Landing Gear Components Involved in Accidents/Incidents

2011-10-20
CURRENT
ARP4915B
This document establishes a procedure for disposition of landing gear components that have been involved in accidents/incidents. The recommendations in this document apply to components made of ferrous and non-ferrous alloys. The recommendations in this document do not apply to components made of non metallic composite materials.
Standard

Development and Qualification of Composite Landing Gears

2010-10-07
CURRENT
AIR5552
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
Standard

Plain Bearing Selection for Landing Gear Applications

2010-07-15
HISTORICAL
AIR1594C
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
Standard

Gland Design: Scraper, Landing Gear, Installation

2008-11-24
CURRENT
AS4052B
This SAE Aerospace Standard (AS) covers an alternate gland design for the installation of scraper/wiper rings in the lower end of landing gear shock struts for the purpose of contaminant exclusion. The defined scraper gland covered by this document, as shown in Table 1, is a variant of AS4716, the accepted gland standard for MS28775, O-ring packing seals. Piston rod diameters, gland internal diameters, groove sidewall angles and the surface finish are all defined by AS4716, but the gland outer retaining wall diameter is changed. The traditional scraper design installed into the glands detailed in Table 1 typically utilize components made from urethane or nitrile materials. These scraper designs, while still acceptable, must be reviewed in consideration to deicing, cleaners and disinfectant fluids applied to or in contact with the landing gear, as the materials of construction for the installed scrapers may not be compatible to these fluids.
Standard

Plain Bearing Selection for Landing Gear Applications

2007-03-05
HISTORICAL
AIR1594B
This document is intended to give advisory information for the selection of plain bearings and bearing materials most suitable for aircraft landing gear applications. Information included herein was derived from bearing tests and service experience/reports. Airframe/landing gear manufacturers, commercial airlines, the U.S. Air Force and Naval Air Systems Command provided input for the document. Information is given on bearing installation methods and fits that have given satisfactory performance and service life. Base metal corrosion is a major cause of problems in bearing installations for landing gears. Therefore, methods of corrosion prevention are discussed. Effort is directed toward minimizing maintenance and maximizing life expectancy of landing gear bearings. Lubricated and self-lubricating bearings are also discussed. There are wide ranges of bearing load and motion requirements for applications in aircraft landing gears.
X