Refine Your Search

Topic

Search Results

Standard

External Hydraulic Fluid Leakage Definition for Landing Gear Shock Absorbers

2023-11-16
CURRENT
ARP6408
The purpose of this SAE Aerospace Recommended Practice (ARP) is to provide a practical definition of external hydraulic fluid leakage exhibited by landing gear shock absorbers/struts. The definition will outline normal (acceptable weepage) and excessive leakage (unacceptable leakage) of shock absorbers/struts that is measurable. The definition of leakage is applicable to new gear assemblies, refurbished/remanufactured (overhauled) shock absorbers/struts, leakage of shock absorbers/struts encountered during acceptance flights, newly delivered and in-service aircraft. This ARP is intended to provide guidelines for acceptable leakage of landing gear shock absorbers/struts between the ambient temperatures of -65 °F (-54 °C) and 130 °F (54 °C) and to outline the procedure for measuring such leakage. The specific limits that are applied to any particular aircraft shall be adjusted by the aircraft manufacturer before inclusion in the applicable maintenance manual.
Standard

Landing Gear Switch Selection Criteria

2022-07-06
CURRENT
AIR5024A
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices (sensor or switch) when used on landing gear. It also contains information which may be helpful when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines based on historic infromation of what is being used.
Standard

Guide for Installation of Electrical Wire and Cable on Aircraft Landing Gear

2021-08-09
CURRENT
AIR4004A
Recent field experience has indicated significant problems with some types of wire and cables as routed on aircraft landing gear. This SAE Aerospace Information Report (AIR) is intended to identify environmental concerns the designer should consider, materials that appear to be most suitable for use in these areas, routing, clamping, and other protection techniques that are appropriate in these applications. In recent years aircraft certification regulatory agencies introduced new regulations regarding Electrical Wiring Interconnection Systems (EWIS) to further enhance safety of the associated systems and aircraft overall.
Standard

Crashworthy Landing Gear Design

2021-08-09
CURRENT
AIR4566A
The intent of this SAE Aerospace Information Report (AIR) is to document the design requirements and approaches for the crashworthy design of aircraft landing gear. This document covers the field of commercial and military airplanes and helicopters. This summary of crashworthy landing gear design requirements and approaches may be used as a reference for future aircraft.
Standard

Landing Gear Switch Selection Criteria

2021-02-03
HISTORICAL
AIR5024
The scope of this document is to discuss the differences between electromechanical and proximity position sensing devices when used on landing gears. It also contains information, which may be helpful, when applying either type of technology after the selection has been made. The purpose is to help the designer make better choices when selecting a position-sensing device. Once that choice has been made, this document includes information to improve the reliability of new or current designs. It is not intended to replace recommendations from sensor manufacturers or actual experience, but to provide a set of general guidelines.
Standard

Development and Qualification of Composite Landing Gears

2020-09-17
CURRENT
AIR5552
This information report provides general guidance for the design considerations, qualification in endurance, strength and fatigue of landing gear using composite components as principle structural elements. The information discussed herein includes the development and evaluation of design data considering: the potential for imbedded manufacturing defects, manufacturing process variations, the component operating environment, potential damage threats in service, rework and overhaul, and inspection processes. This AIR mainly discusses the use of thick composites for landing gear structural components. Considerations and recommendations provided in this AIR may therefore differ greatly from considerations and recommendations found in widely accepted composite design references such as CMH-17 and Advisory Circulars such as AC 20-107(B).
Standard

Landing Gear Shock Absorption Testing of Civil Aircraft

2020-07-14
CURRENT
ARP5644A
The intent of this document is to provide recommended practices for conducting shock absorption testing of civil aircraft landing gear equipped with oleo-pneumatic shock absorbers. The primary focus is for Part 25 aircraft, but differences for Part 23, 27, and 29 aircraft are provided where appropriate.
Standard

Aircraft Nosewheel Steering/Centering Systems

2019-04-17
CURRENT
AIR1752A
The intent of this AIR is twofold: (1) to present descriptive summary of aircraft nosewheel steering and centering systems, and (2) to provide a discussion of problems encountered and “lessons learned” by various airplane manufacturers and users. This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new “lessons learned” become available.
Standard

Mechanical Switch Usage for Landing Gear Applications

2017-10-18
CURRENT
AIR4077
This Aerospace Information Report (AIR) will examine considerations relative to the use of mechanical switches on aircraft landing gear, and present "lessons learned" during the period that these devices have been used.
Standard

Landing Gear Stability

2017-10-18
CURRENT
AIR4894
This SAE Aerospace Information Report (AIR) discusses the nature of landing gear stability, describes many common landing gear stability problems, and suggests approaches and methods for solving or avoiding them.
Standard

Tail Bumpers for Piloted Aircraft

2017-07-14
CURRENT
ARP1107C
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

Landing Gear Structures and Mechanisms

2015-04-27
HISTORICAL
ARP1311C
This SAE Aerospace Recommended Practice (ARP) applies to landing gear structures and mechanisms (excluding wheels, tires, and brakes and other landing gear systems) for all types and models of civil and military aircraft. All axles, wheel forks, links, arms, mechanical and gas/oil shock struts, downlock and uplock assemblies, braces, trunnion beams, and truck beams etc., that sustain loads originating at the ground, and that are not integral parts of the airframe structure, should be designed and validated in accordance with this document. Hydraulic actuators (retraction, main and nose gear steering, positioning, damping, etc.) should also be included in this coverage. System level, non-structural components such as retraction/extension valves, controllers, secondary structure and mechanisms in the airframe (e.g., manual release mechanisms, slaved doors) as well as equipment that is located in the cockpit are not addressed in this ARP.
Standard

Aircraft Nosewheel Steering Systems

2012-07-03
HISTORICAL
ARP1595A
This document provides recommended practices for the design, development, and verification testing of aircraft nosewheel steering (NWS) systems.
Standard

Tail Bumpers for Piloted Aircraft

2012-05-03
HISTORICAL
ARP1107B
This recommended practice covers the fixed structure, or independent energy absorbing system affixed to the airframe to afford protection to the control surfaces, engine and other portions during ground handling, take-off and landing.
Standard

AIRCRAFT NOSE WHEEL STEERING/CENTERING SYSTEMS

2011-08-10
HISTORICAL
AIR1752
This document covers both military aircraft (land-based and ship-based) and commercial aircraft. It is intended that the document be continually updated as new aircraft and/or new "lessons learned" become available.
X