Refine Your Search

Topic

Search Results

Standard

Mechanical Control Design Guide

2019-04-17
WIP
ARP5770A
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the configuration and design of mechanical control signal transmission systems and subsystems. It is focused on the recommended practices for designing cable and pulley, pushrod and bellcrank and push-pull flexible cable control systems. These systems are typically used in some combination to transmit pilot commands into primary, secondary and utility control system commands (mechanical or electrical) or aircraft surface commands. On mechanically controlled aircraft, most pilot control commands are initiated through cockpit mounted wheels, sticks, levers, pedals or cranks that are coupled by pushrods or links to cable systems. The cable systems are routed throughout the aircraft and terminated in close proximity to the commanded surface or function where cranks and pushrods are again used to control the commanded function.
Standard

Integrated Rudder and Brake Pedal Unit, General Requirements for Fly-By Wire Transport and Business Aircraft

2018-10-15
CURRENT
ARP6252
This Aerospace Recommended Practice (ARP) provides general requirements for a generic, integrated rudder and brake pedal unit, incorporating a passive force-feel system that could be used for fixed-wing fly-by wire transport and business aircraft. This ARP addresses the following: The functions to be implemented The mechanical interconnection between captain and F/O station The geometric and mechanical characteristics The mechanical, electrical, and electronic interfaces The safety and certification requirements
Standard

Aerospace - Passive Side Stick Unit, General Requirements for Fly by Wire Transport and Business

2018-10-11
WIP
ARP6001B
This SAE Aerospace Recommended Practice (ARP) provides general requirements for a generic “passive” side stick that could be used for fly by wire transport and business aircraft. It addresses the following: - The functions to be implemented - The geometric and mechanical characteristics - The mechanical and electrical interfaces - The safety and certification requirements
Standard

Aerospace - Passive Side Stick Unit General Requirements for Fly by Wire Transport and Business

2018-10-04
CURRENT
ARP6001A
This SAE Aerospace Recommended Practice (ARP) provides general requirements for a generic “passive” side stick that could be used for fly by wire transport and business aircraft. It addresses the following: The functions to be implemented The geometric and mechanical characteristics The mechanical and electrical interfaces The safety and certification requirements
Standard

Vehicle Management Systems - Flight Control Function, Design, Installation and Test of Piloted Military Aircraft, General Specification For

2018-08-13
CURRENT
AS94900A
This SAE Aerospace Standard (AS) provides the general performance, design, installation, test, development, and quality assurance requirements for the flight control related functions of the Vehicle Management Systems (VMS) of military piloted aircraft. It also provides specification guidance for the flight control interfaces with other systems and subsystems of the aircraft.
Standard

Methodology for Investigation of Flight Control System Anomalies

2018-04-24
WIP
AIR5875A
This SAE Aerospace Information Report (AIR) outlines comprehensive aircraft flight control system fault isolation methodology that has proven to be effective. The methodology presented in this Information Report has been used in several successful fault isolation efforts on military aircraft.
Standard

Development Process - Aerospace Fly-By-Wire Actuation System

2018-04-23
WIP
ARP5007B
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
Standard

Primary Flight Control Hydraulic Actuation System Interface Definition

2015-10-19
CURRENT
AIR4922A
This SAE Aerospace Information Report (AIR) provides a description of the interfaces and their requirements for generic and specific hydraulic actuation systems used in the flight control systems of manned aircraft. Included are the basic control system characteristics and functional requirements, and the essential interfaces (structural, mechanical, hydraulic power, control input, status monitoring, and environment). Major design issues, requirements, and other considerations are presented and discussed.
Standard

Actuation System Failure Detection Methods

2013-05-05
WIP
AIR5273A
This AIR provides descriptions of aircraft flight control actuation system failure-detection methods. The fault-detection methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight controls.
Standard

Aerospace Active Inceptor Systems for Aircraft Flight and Engine Controls

2013-02-10
CURRENT
ARP5764
The purpose of this document is to develop the general characteristics and requirements for feel-force control systems for active cockpit controllers, also known as Active Inceptors. The document presents technical material that describes the recommended key characteristics and design considerations for these types of systems. Where appropriate, the effects of platform specific requirements (e.g., single axis/dual axis, single seat/dual seat, civil/military, rotorcraft/fixed wing aircraft, etc.) are clearly identified. The material developed will serve as a reference guide for: a Aircraft prime contractors who want to understand active cockpit controller technology and develop their own set of requirements; b Suppliers that develop active cockpit controller equipment and; c Regulatory Authorities who will be involved in the certification of these types of systems.
Standard

Aerospace - Vehicle Management Systems - Flight Control Design, Installation and Test of, Military Unmanned Aircraft, Specification Guide For

2012-12-19
CURRENT
ARP94910
This document establishes recommended practices for the specification of general performance, design, test, development, and quality assurance requirements for the flight control related functions of the Vehicle Management Systems (VMS) of military Unmanned Aircraft (UA), the airborne element of Unmanned Aircraft Systems (UAS), as defined by ASTM F 2395-07. The document is written for military unmanned aircraft intended for use primarily in military operational areas. The document also provides a foundation for considerations applicable to safe flight in all classes of airspace.
Standard

Mechanical Control Design Guide

2012-11-01
CURRENT
ARP5770
This SAE Aerospace Recommended Practice (ARP) provides guidelines for the configuration and design of mechanical control signal transmission systems and subsystems. It is focused on the recommended practices for designing cable and pulley, pushrod and bellcrank and push-pull flexible cable control systems. These systems are typically used in some combination to transmit pilot commands into primary, secondary and utility control system commands (mechanical or electrical) or aircraft surface commands. On mechanically controlled aircraft, most pilot control commands are initiated through cockpit mounted wheels, sticks, levers, pedals or cranks that are coupled by pushrods or links to cable systems. The cable systems are routed throughout the aircraft and terminated in close proximity to the commanded surface or function where cranks and pushrods are again used to control the commanded function.
Standard

Aerospace - Passive Side Stick Unit General Requirements for Fly by Wire Transport and Business

2012-07-31
HISTORICAL
ARP6001
This SAE Aerospace Recommended Practice (ARP) provides general requirements for a generic “passive” side stick that could be used for fly by wire transport and business aircraft. It addresses the following: The functions to be implemented The geometric and mechanical characteristics The mechanical and electrical interfaces The safety and certification requirements
Standard

Aerospace - Flight Control Systems - Design, Installation and Test of Piloted Military Aircraft, General Specification For

2007-07-06
HISTORICAL
AS94900
This specification establishes general performance, design, test, development and quality assurance requirements for the Flight Control Systems of military piloted aircraft. Flight Control Systems (FCS) include all components used to transmit flight control commands from the pilot or other sources to appropriate force and moment producers. Flight control commands normally result in control of aircraft altitude, airspeed, flight path, attitude, aerodynamic or geometric configuration, ride quality, and structural modes. Among components included are the pilot’s controls, dedicated displays and logic switching, system inertial and air data sensors, signal computation, test devices, mechanical transmission devices, actuators, power sources, and signal transmission lines dedicated to flight control. Excluded are aerodynamic surfaces, engines and engine control systems, rotorcraft rotors, fire control devices, crew displays and electronics not dedicated to flight control.
Standard

Methodology for Investigation of Flight Control System Anomalies

2005-06-29
CURRENT
AIR5875
This SAE Aerospace Information Report (AIR) outlines comprehensive aircraft flight control system fault isolation methodology that has proven to be effective. The methodology presented in this Information Report has been used in several successful fault isolation efforts on military aircraft.
Standard

Development Process - Aerospace Fly-By-Wire Actuation System

2005-06-28
CURRENT
ARP5007A
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
Standard

Actuation System Failure Detection Methods

2001-12-20
CURRENT
AIR5273
This AIR provides descriptions of aircraft actuation system failure-detection methods. The methods are those used for ground and in-flight detection of failures in electrohydraulic actuation systems for primary flight control. The AIR concentrates on full Fly-By-Wire (FBW) flight control actuation though it includes one augmented-control system. The background to the subject is discussed in terms of the impact that factors such as the system architecture have on the detection methods chosen for the flight control system. The types of failure covered by each monitoring technique are listed and discussed in general. The way in which these techniques have evolved is illustrated with an historical review of the methods adopted for a series of aircraft, arranged approximately in design chronological order.
Standard

Utility System Characterization, an Overview

2000-09-01
CURRENT
AIR5428
Modern air vehicles consist of many subsystems, traditionally managed as a federation of independent subsystems. Advances in control technologies, digital electronics and electro-mechanical hardware, provide potential opportunities to integrate subsystems for future aircraft. This document does not define any particular integration strategy. Its purpose is to provide information about traditional federated subsystems from the functional, control, resource, and hardware perspective. To be able to integrate subsystems, one must have a basic understanding of the subsystems, and this document provides an introduction or starting point for initiating the integration process. The focus is on the aircraft subsystems, which includes utility, flight and propulsion control (e.g., electric power, environmental control subsystem (ECS), fuel, etc.) The depth of the information intends to provide an introduction to the subsystems.
Standard

Development Process - Aerospace Fly-By-Wire Actuation System

1997-06-01
HISTORICAL
ARP5007
This document provides a description of a process for development of fly-by-wire actuation systems. Included are (1) the development of requirements for the servo-actuator hardware and the electronics hardware and software, (2) actuator and servo-electronics interface definitions and, (3) the required communications and interactions between the servo-actuator and the servo-electronics designers.
X