Refine Your Search

Topic

Search Results

Standard

Motors, Aircraft Hydraulic, Constant Displacement General Specification For

2018-08-15
CURRENT
AS7997A
This Specification covers constant displacement hydraulic motors, generally remotely mounted, using hydraulic fluid under pressure as the energy transfer medium for driving various accessories. Hydraulic motors shall be suitable for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891 as applicable.
Standard

Aerospace – Military Type Variable Delivery, Pressure Compensated Hydraulic Pump

2016-06-22
CURRENT
AS19692B
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance, and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps used in military aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS. The hydraulic pumps defined by this AS are generally for use in aircraft hydraulic systems conforming to and as defined in AS5440 and MIL-H-8891, as applicable.
Standard

Aerospace - Accumulator, Hydraulic, Cylindrical, Piston Separated

2016-04-20
CURRENT
ARP4379B
This SAE Aerospace Recommended Practice (ARP) is a guide for defining the requirements for aerospace piston hydraulic accumulators, including details pertinent to the design, fabrication, performance and testing of the accumulator. This type of accumulator contains a piston which separates pressurized gas and fluid.
Standard

High Pressure Pneumatic Compressors Users Guide For Aerospace Applications

2013-11-11
CURRENT
AIR4994A
Gas compressors (air and other compressible fluids) have been used sporadically since the 1940's for various utility functions in aerospace applications. They have been used to provide power to gun purge and drive systems, engine or APU starters (recharge accumulators), reservoir pressurization, cockpit pressurization, braking systems, canopy seals, engine control devices, landing gear activation, and boosted flight controls (see Table 1). In current state-of-the-art aircraft, most pneumatic system power is extracted from a stage of compression in the turbo-jet engine. As more and more demands are put on new generation engines for fuel economy and performance there is an increasing need for a new source of pneumatic power. This document is intended to describe current state-of-the-art technology in compressors, define the limitations, discuss enhancements needed and attempt to predict the needs of the future.
Standard

Liquid Propellant Gas Generation Systems

2013-06-17
CURRENT
AIR1343B
This information report presents a preliminary discussion of liquid propellant gas generation (LPGG) systems. A LPGG system, as used herein, is defined as a system which stores a liquid propellant and, on command, discharges and converts the liquid propellant to a gas. The LPGG system can interface with a gas-to-mechanical energy conversion device to make up an auxiliary power system. Figure 1 shows a block diagram of LPGG system components which include a propellant tank, propellant expulsion system, propellant control and a decomposition (or combustion) chamber. The purpose of this report is to provide general information on the variety of components and system arrangements which can be considered in LPGG design, summarize advantages and disadvantages of various approaches and provide basic sizing methods suitable for initial tradeoff purposes.
Standard

Compressor Units, Air/Gas, General Requirements For

2013-06-13
CURRENT
AS26805B
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Aerospace – Civil Type Variable Delivery, Pressure Compensated, Hydraulic Pump

2010-08-02
CURRENT
AS595D
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance and qualification testing of flat cut-off pressure compensated, variable delivery hydraulic pumps, used in civil aircraft hydraulic systems. It also provides parameters for a Procurement Specification to be used in conjunction with this AS for each pump. NOTE: Hydraulic pumps may incorporate features such as a clutch in the input drive, which will not be covered by this standard.
Standard

Aerospace Auxiliary Power Sources

2010-06-16
CURRENT
AIR744C
This SAE Aerospace Information Report (AIR) is a review of the general characteristics of power sources that may be used to provide secondary, auxiliary, or emergency power for use in aircraft, space vehicles, missiles, remotely piloted vehicles, air cushion vehicles, surface effect ships, or other vehicles in which aerospace technology is used. The information contained herein is intended for use in the selection of the power source most appropriate to the needs of a particular vehicle or system. The information may also be used in the preparation of a power source specification. Considerations for use in making a trade study and an evaluation of the several power sources are included. More detailed information relating to specific power sources is available in other SAE Aerospace Information Reports or in Aerospace Recommended Practices.
Standard

Compressor Units, Air/Gas, General Requirements For

2008-04-09
HISTORICAL
AS26805A
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Aerospace - Civil Type Variable Delivery, Pressure Compensated, Hydraulic Pump

2003-09-25
HISTORICAL
AS595C
This SAE Aerospace Standard (AS) establishes the general requirements for the design, construction, acceptance and qualification test of pressure compensated, variable delivery hydraulic pumps, used in civil aircraft hydraulic systems. It provides additional parameters for a Procurement Specification to be used in conjunction with this AS for each pump. This AS is applicable to hydraulic pumps driven by an engine, in systems conforming to the general requirements of ARP4752, and the regulations of FAR and/or JAR 25. It is also applicable to pumps driven by other power sources such as electric motors, ram air turbines and engine bleed air turbines.
Standard

Compressor Units, Air/Gas, General Requirements For

2001-03-01
HISTORICAL
AS26805
This specification covers the general requirements for the design and construction of air/gas compressor units (see 6.4.1). The detail requirements for a particular air compressor unit shall be as specified in the individual equipment specification for that particular air compressor unit (see 6.2).
Standard

Pumps, Hydraulic, Variable Flow, General Specification For

1999-07-01
HISTORICAL
AS19692A
This specification and a detail pump specification establish the requirements for variable flow hydraulic pumps, for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891, as applicable. The general requirements for type I and type II hydraulic systems pumps are specified in MIL-H-8775 and for type III system pumps in MIL-H-8890.
Standard

Motors, Aircraft Hydraulic, Constant Displacement General Specification For

1999-04-01
HISTORICAL
AS7997
This Specification covers constant displacement hydraulic motors, generally remotely mounted, using hydraulic fluid under pressure as the energy transfer medium for driving various accessories. Hydraulic motors shall be suitable for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891 as applicable.
Standard

PUMPS, HYDRAULIC, VARIABLE FLOW, GENERAL SPECIFICATION FOR

1998-05-01
HISTORICAL
AS19692
This specification and a detail pump specification establish the requirements for variable flow hydraulic pumps, for use in aircraft hydraulic systems conforming to and as defined in MIL-H-5440 and MIL-H-8891, as applicable. The general requirements for type I and type II hydraulic systems pumps are specified in MIL-H-8775 and for type III system pumps in MIL-H-8890.
Standard

High Pressure Pneumatic Compressors Users Guide For Aerospace Applications

1996-01-01
HISTORICAL
AIR4994
Gas compressors (air and other compressible fluids) have been used sporadically since the 1940's for various utility functions in aerospace applications. They have been used to provide power to gun purge and drive systems, engine or APU starters (recharge accumulators), reservoir pressurization, cockpit pressurization, braking systems, canopy seals, engine control devices, landing gear activation, and boosted flight controls (see Table 1). In current state-of-the-art aircraft, most pneumatic system power is extracted from a stage of compression in the turbo-jet engine. As more and more demands are put on new generation engines for fuel economy and performance there is an increasing need for a new source of pneumatic power. This document is intended to describe current state-of-the-art technology in compressors, define the limitations, discuss enhancements needed and attempt to predict the needs of the future.
Standard

Aerospace Auxiliary Power Sources

1995-07-01
HISTORICAL
AIR744B
This SAE Aerospace Information Report (AIR) is a review of the general characteristics of power sources that may be used to provide secondary, auxiliary, or emergency power for use in aircraft, space vehicles, missiles, remotely piloted vehicles, air cushion vehicles, surface effect ships, or other vehicles in which aerospace technology is used. The information contained herein is intended for use in the selection of the power source most appropriate to the needs of a particular vehicle or system. The information may also be used in the preparation of a power source specification. Considerations for use in making a trade study and an evaluation of the several power sources are included. More detailed information relating to specific power sources is available in other SAE Aerospace Information Reports or in Aerospace Recommended Practices.
X