Refine Your Search

Topic

Affiliation

Search Results

Technical Paper

Spectroscopic Investigation of Initial Combustion Stages in a SI Engine Fuelled with Ethanol and Gasoline

2017-11-05
2017-32-0092
It is well known that ethanol can be used in spark-ignition (SI) engines as a pure fuel or blended with gasoline. High enthalpy of vaporization of alcohols can affect air-fuel mixture formation prior to ignition and may form thicker liquid films around the intake valves, on the cylinder wall and piston crown. These liquid films can result in mixture non-homogeneities inside the combustion chamber and hence strongly influence the cyclic variability of early combustion stages. Starting from these considerations, the paper reports an experimental study of the initial phases of the combustion process in a single cylinder SI engine fueled with commercial gasoline and anhydrous ethanol, as well as their blend (50%vol alcohol). The engine was optically accessible and equipped with the cylinder head of a commercial power unit for two-wheel applications, with the same geometrical specifications (bore, stroke, compression ratio).
Journal Article

Alternative Diesel Fuels Characterization in Non-Evaporating and Evaporating Conditions for Diesel Engines

2010-05-05
2010-01-1516
This paper reports the study of the effects of alternative diesel fuel and the impact for the air-fuel mixture preparation. The injection process characterization has been carried out in a non-evaporative high-density environment in order to measure the fuel injection rate and the spatial and temporal distribution of the fuel. The injection and vaporization processes have been characterized in an optically accessible single cylinder Common Rail diesel engine representing evaporative conditions similar to the real engine. The tests have been performed by means of a Bosch second generation common rail solenoid-driven fuel injection system with a 7-holes nozzle, flow number 440 cc/30s @100bar, 148deg cone opening angle (minisac type). Double injection strategy (pilot+main) has been implemented on the ECUs corresponding to operative running conditions of the commercial EURO 5 diesel engine.
Technical Paper

Optical Characterization of the Combustion Process in a 4- Stroke Engine for 2-Wheel Vehicle.

2009-09-13
2009-24-0055
The match among the increasing performance demands and the stringent requirements of emissions and the fuel consumption reduction needs a strong evolution in the two-wheel vehicle technology. In particular, many steps forward should be taken for the optimization of modern small motorcycles and scooters at low engine speeds and high loads. To this aim, detailed understanding of thermo-fluid dynamic phenomena that occur in the combustion chamber is fundamental. In this work, low-cost solutions are proposed to optimize ported fuel injection spark ignition (PFI SI) engines for two-wheel vehicles. The solutions are based on the change of phasing and on the splitting of the fuel injection in the intake manifold. The experimental activities were carried out in the combustion chamber of a single-cylinder 4-stroke optical engine fuelled with European commercial gasoline. The engine was equipped with a four-valve head of a commercial scooter engine.
Journal Article

Spectroscopic Investigations and High Resolution Visualization of the Combustion Phenomena in a Boosted PFI SI Engine

2009-06-15
2009-01-1814
High spatial and temporal resolution optical techniques were applied in a spark ignition (SI) engine in order to investigate the thermal and fluid dynamic phenomena occurring during the combustion process. The experiments were realized in the combustion chamber of an optically accessible single-cylinder port-fuel injection (PFI) SI engine. The engine was equipped with a four-valve head and with an external boost device. Two fuel injection strategies at closed-valve and open-valve occurring at wide open throttle were tested. Cycle-resolved digital imaging was used to follow the flame kernel growth and flame front propagation. Moreover, the effects of an abnormal combustion due to the firing of fuel deposition near the intake valves and on the piston surface were investigated. Natural emission spectroscopy in a wide wavelength range from ultraviolet to infrared was applied to detect the radical species that marked the combustion phenomena in the selected operating conditions.
Journal Article

Optical Investigations of the Abnormal Combustion in a Boosted Spark-ignition PFI Engine

2009-04-20
2009-01-0697
The flame front propagation in normal and abnormal combustion was investigated. Cycle-resolved flame emission imaging was applied in the combustion chamber of a port fuel injection boosted spark ignition engine. The engine was fuelled with a mixture of 90% iso-octane and 10% n-heptane by volume (PRF90). The effect of fuel injection phasing was studied. The combustion process was followed from the flame kernel formation until the opening of the exhaust valves. Different phenomena correlated to the abnormal combustion were analysed. Detailed information on ignition surfaces, end-gas auto-ignitions and knock were obtained. The appearance of autoignition centres in the end gas was evaluated in terms of timing, location and frequency of occurrence.
Journal Article

Effect of the Engine Head Geometry on the Combustion Process in a PFI Boosted Spark-ignition Engine

2009-04-20
2009-01-0504
In this work, a boosted single-cylinder spark ignition port-fuel injection optical engine was used for the experimental activity. Firstly, it was equipped with a four-valve head of a commercial turbocharged multi-cylinder engine. Then a prototype engine head with flush installed intake valves was tested. The effect of the different head geometry was evaluated in closed intake valves fuel injection condition. High spatial resolution cycle-resolved digital imaging was used to characterise the flame propagation. Moreover, the presence of diffusion-controlled flames near the valves and on the cylinder walls was investigated. These flames induced the formation of unburned hydrocarbons and soot particles. The spatial distribution and temporal evolution of soot were evaluated by the two colour pyrometry. The prototype configuration showed higher combustion process efficiency than the standard one inducing a little increase in performance and a slight reduction in carbon oxides emissions.
Journal Article

1D Thermo-Fluid Dynamic Modeling of Reacting Flows inside Three-Way Catalytic Converters

2009-04-20
2009-01-1510
In this work a detailed model to simulate the transient behavior of catalytic converters is presented. The model is able to predict the unsteady and reacting flows in the exhaust ducts, by solving the system of conservation equations of mass, momentum, energy and transport of reacting chemical species. The en-gine and the intake system have not been included in the simulation, imposing the measured values of mass flow, gas temperature and chemical composition as a boundary condition at the inlet of the exhaust system. A detailed analysis of the diffusion stage triggering is proposed along with simplifications of the physics, finalized to the reduction of the calculation time. Submodels for water condensation and its following evaporation on the monolith surface have been taken into account as well as oxygen storage promoted by ceria oxides.
Journal Article

Multi-Dimensional Modeling of the Soot Deposition Mechanism in Diesel Particulate Filters

2008-04-14
2008-01-0444
A computational, three-dimensional approach to investigate the behavior of diesel soot particles in the micro-channels of wall-flow Diesel Particulate Filters is presented. The KIVA3V CFD code, already extended to solve the 2D conservation equations for porous media materials [1], has been enhanced to solve in 2-D and 3-D the governing equations for reacting and compressible flows through porous media in non axes-symmetric geometries. With respect to previous work [1], a different mathematical approach has been followed in the implementation of the numerical solver for porous media, in order to achieve a faster convergency as source terms were added to the governing equations. The Darcy pressure drop has been included in the Navier-Stokes equations and the energy equation has been extended to account for the thermal exchange between the gas flow and the porous wall.
Journal Article

Effect of Injection Phasing on Valves and Chamber Fuel Deposition Burning in a PFI Boosted Spark-Ignition Engine

2008-04-14
2008-01-0428
A satisfactory answer to the future severe normative on emissions and to the market request for spark ignition engines seems to be the use of downsized engines for passenger cars. Downsizing permits the increase in engines power and torque without the increase in cylinder capacity. The downsizing benefits are evident at part loads; on the other hand, more work should be done to optimize boosted engines at higher and full load. To this goal, a detailed knowledge of the thermo-fluid dynamic processes that occur in the combustion chamber is fundamental. The aim of this paper is the experimental investigation of the effect of the fuel injection in the intake manifold on the combustion process and pollutant formation in a boosted spark ignition (SI) engine. The experiments were performed on a partially transparent single-cylinder port fuel injection (PFI) SI engine, equipped with a four-valve head and boost device.
Technical Paper

A Multizone approach to the detailed kinetic modeling of HCCI combustion

2007-09-16
2007-24-0086
A 1-D thermo-fluid dynamic simulation code, including a quasi-D combustion model coupled with a detailed kinetic scheme, is used to analyze the combustion process in HCCI engines. The chemical mechanism has previously been validated in comparison with experimental data over a wide range of operating conditions. To explore the impact on model predictions, the cylinder was divided into multiple zones to characterize the conditions of the in-cylinder charge. Particular attention is devoted to the numerical algorithm in order to ensure the robustness and efficiency of the large system solution. This numerical model allows study of the autoignition of the air fuel mixture and determines the chemical evolution of the system. The proposed model was compared with in-cylinder temperature and chemical species profiles. The experimental activity was carried out in the combustion chamber of a single cylinder air cooled engine operating in HCCI mode.
Technical Paper

Flame Diagnostics in the Combustion Chamber of Boosted PFI SI Engine

2007-09-16
2007-24-0003
The growing demands on fuel economy and always stricter limitations on pollutant emissions has increased the interest in the ignition phenomena to guarantee successful flame development for all the spark ignition (SI) engine operating conditions. The initial size and the growth of the flame have a strong influence on the further development of the combustion process. In particular, for the new FIAT generation of turbocharged SI engines, the first times of spark ignition combustion are not yet fully understood. This is mainly due to the missing knowledge concerning the detailed physical and chemical processes taking place during the all set of the flame propagation. These processes often occur simultaneously, making difficult the interpretation of measurements. In the present paper, flame dynamic was followed by UV-visible emission imaging in an optical SI engine.
Technical Paper

Development and Experimental Validation of a Combustion Model with Detailed Chemistry for Knock Predictions

2007-04-16
2007-01-0938
Aim of this work is to develop a general purpose model for combustion and knocking prediction in SI engines, by coupling a thermo-fluid dynamic model for engine simulation with a general detailed kinetic scheme, including the low-temperature oxidation mechanism, for the prediction of the auto-ignition behavior of hydrocarbons. A quasi-D approach is used to describe the in-cylinder thermodynamic processes, applying the conservation of mass and energy over the cylinder volume, modeled as a single open system. The complex chemistry model has been embedded into the code, by using the same integration algorithm for the conservation equations and the reacting species, and taking into account their mutual interaction in the energy balance. A flame area evolution predictive approach is used to evaluate the turbulent flame front propagation as function of the engine operating parameters.
Technical Paper

Kinetic Modeling of Knock Properties in Internal Combustion Engines

2006-10-16
2006-01-3239
This work presents a general model for the prediction of octane numbers and knock propensity of different fuels in SI engines. A detailed kinetic scheme of hydrocarbon oxidation is coupled with a two zone, 1-D thermo-fluid dynamic simulation code (GASDYN) [1]. The validation of the kinetic scheme is discussed on the basis of recent experimental measurements. CFR engine simulations for RON and MON evaluation are presented first to demonstrate the capabilities of the coupled model. The model is then used to compare the knock propensity of a gasoline “surrogate” (a pure hydrocarbon mixture) and PRFs in a current commercial engine, resulting in a simulation of “real world” octane number determination, such as Bench Octane Number (BON). The simulation results agree qualitatively with typical experimental trends.
Technical Paper

1D Modeling of the Hydrodynamics and of the Regeneration Mechanism in Continuous Regenerating Traps

2006-09-14
2006-01-3011
The present work focuses on the simulation of the hydrodynamics, transient filtration/loading and catalytic/NO2-assisted regeneration of Diesel after-treatment systems. A 1D unsteady model for compressible and reacting flows for the numerical simulation of the behavior of Diesel Oxidation Catalysts (DOCs) and Diesel Particulate Filters (DPFs) has been developed. The numerical model is able to keep track of the amount of soot in the flow; the increasing of back-pressure through the exhaust system (mainly due to the Diesel Particulate Filter) can be predicted by the calculation of the permeability variation of the porous wall, as the soot particles goes inside the DPF. A sub-model for the regeneration of the collected soot has been developed: the collected particulate is oxidized by the Oxygen (O2) and by the Nitrogen Dioxide (NO2).
Technical Paper

A 1D Unsteady Thermo-Fluid Dynamic Approach for the Simulation of the Hydrodynamics of Diesel Particulate Filters

2006-04-03
2006-01-0262
A new approach for the fluid-dynamic simulation of the Diesel Particulate Filters (DPF) has been developed. A mathematical model has been formulated as a system of nonlinear partial differential equations describing the conservation of mass, momentum and energy for unsteady, compressible and reacting flows, in order to predict the hydrodynamic characteristics of the DPF and to study the soot deposition mechanism. In particular, the mass conservation equations have been solved for each chemical component considered, and the advection of information concerning the chemical composition of the gas has been figured out for each computational mesh. A sub-model for the prediction of the soot cake formation has been developed and predictions of soot deposition profiles have been calculated for different loading conditions. The results of the simulations, namely the calculated pressure drop, have been compared with the experimental data.
Technical Paper

Soot Concentration and Particle Size in a DI CR Diesel Engine by Broadband Scattering and Extinction Measurements

2005-09-11
2005-24-013
Actual emission legislation limits strongly the amount of pollutant in the atmosphere from internal combustion engine. In particular diesel engines widely emit NOx and particulate matter (PM). The last one has principally a carbonaceous nature and presents micronic and submicronic particles extremely dangerous for human health since it could deposit in the lung. In this work, a technique based on broadband ultraviolet (UV) visible scattering and extinction is applied inside a transparent DI CR diesel engine in order to analyze the soot evolution and oxidation. The study is carried out with particular detail for different injection strategies characterized of two and three injections per cycle, Pre+Main and Pre+Main+Post, considering the late combustion before the exhaust stroke. The analysis is performed in terms of size, mass concentration, and chemical and physical nature.
Technical Paper

Soot Particle Size Distribution~A Joint Work for Kinetic Modelling and Experimental Investigations

2005-09-11
2005-24-053
The intention of the presented work was to develop a new simulation tool that fits into a CFD (computational fluid dynamics) workflow and provides information about the soot particle size distribution. Additionally it was necessary to improve and use state-of-the-art measurement techniques in order to be able to gain more knowledge about the behavior of the soot particles and to validate the achieved simulation results. The work has been done as a joint research financed by the European Community under FP5.
Technical Paper

Kinetic Modelling Study of Octane Number and Sensitivity of Hydrocarbon Mixtures in CFR Engines

2005-09-11
2005-24-077
Aim of this work is to present and discuss the possibility and the limits of two zone models for spark-ignition engines using a detailed kinetic scheme for the characterization of the evolution of the air-fuel mixture, while an equilibrium approach is used for the burnt zone. Simple experimental measurements of knocking tendency of different fuels in ideal reactors, such as rapid compression machines and shock tube reactors, cannot be directly used for the analysis of octane numbers and sensitivity of hydrocarbon mixtures. Thus a careful investigation is very useful, not only of the combustion chamber behavior, including the modelling of the turbulent flame front propagation, but also of the fluid dynamic behavior of the intake and exhaust system, accounting for the volumetric efficiency of the engine.
Technical Paper

Nanoparticles Characterization at Spark Ignition Engine Exhaust

2005-09-11
2005-24-010
The aim of the paper is the characterization in terms of chemical and physical nature of particles at exhaust of spark ignition (SI) engine. Measurements were carried out at exhaust of 16v - 1.2 litre Port Fuel Injection Spark Ignition engine downstream a catalyst. The emission of nanoparticles was investigated by optical techniques and conventional methods. In particular laser induced incandescence (LII), and broadband multiwavelength extinction-scattering spectroscopy (BUVESS) were used. LII allowed the detection and sizing primary particles of carbonaceous nature. BUVESS measured particle size distribution by numerical procedure that took advantage by data at several wavelengths. The optical results were compared with those obtained by conventional methods like opacimeter for mass concentration and Electrical Low Pressure Impactor (ELPI) for sizing. Different engine operating conditions were selected in order to evaluate their influence on the particle nature and size distribution.
Technical Paper

Diesel Exhaust Nanoparticles Characterization by Multiwavelength Techniques, Laser Induced Incandescence and ELPI

2005-09-11
2005-24-021
Two different optical techniques for detection, sizing and counting nanoparticles were applied to undiluted exhaust from 16 v–1900 cc Common Rail diesel engine upstream and downstream a Catalyzed Diesel Particulate Filter (CDPF): Broadband Ultraviolet–Visible Extinction and Scattering Spectroscopy (BUVESS) and Laser Induced Incandescence (LII). They are powerful “in situ” and non-intrusive techniques; they are able to measure mass concentration and size of particles, considering their chemical properties. BUVESS overcomes the intrinsic limitations of single wavelength techniques because it takes advantage of data at several wavelengths to retrieve primary particle size distribution. LII measures mean size of primary particles with a large dynamic range, not limited by aggregate size and by complex retrieving procedure.
X