Refine Your Search

Topic

Search Results

Viewing 1 to 16 of 16
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2022-03-21
WIP
ARP699F
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Aircraft Turbine Engine Pneumatic Component Contaminated Air Endurance Test

2017-09-05
CURRENT
ARP4014A
This SAE Aerospace Recommended Practice (ARP) describes a method of conducting an endurance test using contaminated air when the applicable specification requires non-recirculation of the contaminants. The objective of the test is to determine the resistance of the engine mounted components to wear or damage caused by the contaminated air. The method described herein calls for non-recirculation of the contaminants and is intended to provide a uniform distribution of the contaminant at the inlet to the Unit Under Test (UUT). The UUT may require the use of a hydraulic fluid for actuation of components within the test unit. Contamination of the test hydraulic fluid is not part of this recommended practice. If contaminated hydraulic fluid is required by the applicable test specification, refer to MAP749.
Standard

Liquid Cooling Systems

2016-09-10
WIP
AIR1811B
The purpose of this Aerospace Information Report (AIR) is to provide guidelines for the selection and design of airborne liquid cooling systems. This publication is applicable to liquid cooling systems of the closed loop type and the expendable coolant type in which the primary function is transporting of heat from its source to a heat sink. Most liquid cooling system applications are oriented toward the cooling of electronics. Liquid cooling techniques, heat sinks, design features, selection of coolants, corrosion control, and servicing requirements for these systems are presented. Information on vapor compression refrigeration systems, which are a type of cooling system, is found in Reference 1.
Standard

High Temperature Pneumatic Duct Systems for Aircraft

2015-11-09
CURRENT
ARP699E
This Recommended Practice is intended to outline the design, installation, testing, and field maintenance criteria for a high temperature metal pneumatic duct system, for use as a guide in the aircraft industry. These recommendations are to be considered as currently applicable and necessarily subject to revision from time to time, as a result of the rapid development of the industry.
Standard

Aerospace Vehicle Cryogenic Duct Systems

2011-08-10
CURRENT
ARP735A
This Aerospace Recommended Practice outlines the design, installation, testing and field maintenance criteria for aerospace vehicle cryogenic duct systems. These recommendations are considered currently applicable guides and are subject to revision due to the continuing development within industry.
Standard

Aerothermodynamic Systems Engineering and Design

2011-06-20
HISTORICAL
AIR1168/3
This section presents methods and examples of computing the steady-state heating and cooling loads of aircraft compartments. In a steady-state process the flows of heat throughout the system are stabilized and thus do not change with time. In an aircraft compartment, several elements compose the steady-state air conditioning load.
Standard

Acoustical Considerations for Aircraft Environmental Control System Design

2011-01-14
HISTORICAL
AIR1826
This Aerospace Information Report (AIR) is limited in scope to the general consideration of environmental control system noise and its effect on occupant comfort. Additional information on the control of environmental control system noise may be found in the bibliography and in the documents referenced throughout the text. This document does not contain sufficient direction and detail to accomplish effective and complete acoustic designs.
Standard

Guide for Qualification Testing of Aircraft Air Valves

2008-11-06
HISTORICAL
ARP986C
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRCRAFT COMPARTMENT

1992-03-01
HISTORICAL
ARP89C
The recommendations of this ARP are primarily intended to be applicable to temperature control of compartments, occupied or unoccupied, of civil aircraft whose prime function is the transporting of passengers or cargo. The recommendations will apply, however, to a much broader category of civil and military aircraft where automatic temperature control systems are applicable.
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1990-02-28
HISTORICAL
ARP986B
This Aerospace Recommended Practice (ARP) defines tests to be performed on hydraulically, electrically, pneumatically, and mechanically actuated air valves. They may be further defined as those valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff).
Standard

GUIDE FOR QUALIFICATION TESTING OF AIRCRAFT AIR VALVES

1982-10-01
HISTORICAL
ARP986A
This document defines tests to be performed on electrically, pneumatically, and mechanically actuated (regulating, modulating, and shutoff) air valves. The valves may be further defined as those which function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions to maintain a calibrated duct air condition (i.e., air flow, air pressure, air temperature, air pressure ratio, etc.). The requirements of this document should govern for all qualification tests unless different requirements are established by the detail specifications.
Standard

TEMPERATURE CONTROL EQUIPMENT, AUTOMATIC, AIRPLANE CABIN

1956-03-15
HISTORICAL
ARP89B
This recommended practice covers automatic cabin temperature control systems of the following types for pressurized and unpressurized cabins: Type I - Proportioning. Type II - On-Off, or Cycling. Type III - Floating, including modifications thereof.
X