Refine Your Search

Topic

Search Results

Standard

Heater and Accessories, Aircraft Internal Combustion Heat Exchanger Type

2019-10-01
CURRENT
AS8040C
This SAE Aerospace Standard (AS) covers combustion heaters and accessories used in, but not limited to, the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft deicing
Standard

Air Cycle Air Conditioning Systems for Air Vehicles

2019-08-20
CURRENT
AS4073B
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Animal Environment in Cargo Compartments

2019-06-05
WIP
AIR1600B
The environmental factors of prime importance in the transport of animals in aircraft are air temperature, humidity and carbon dioxide concentration, and of course space (or volume) limitations. Secondary factors are air velocity, noise, lighting, etc. Pressure isnot addressed herein as pressure levels and rates of change are totally dictated by human occupancy requirements. Some basic governmental documents, such as References 1, 2 and 3, define overall requirements for animal transportation, but with very limited data on environmental requirements. Reference 4 gives some airplane characteristics measured during animal transportation from the USA to foreign destinations. Temperature and humidity profiles are indicative of airplane characteristics. This report presents information on the temperature, humidity, ventilation, and carbon dioxide limitations and the metabolic heat release rates for animals which will allow the determination of the environment required by th animals.
Standard

Thermodynamics of Incompressible and Compressible Fluid Flow

2019-04-11
CURRENT
AIR1168/1A
The fluid flow treated in this section is isothermal, subsonic, and incompressible. The effects of heat addition, work on the fluid, variation in sonic velocity, and changes in elevation are neglected. An incompressible fluid is one in which a change in pressure causes no resulting change in fluid density. The assumption that liquids are incompressible introduces no appreciable error in calculations, but the assumption that a gas is incompressible introduces an error of a magnitude that is dependent on the fluid velocity and on the loss coefficient of the particular duct section or piece of equipment. Fig. 1A-1 shows the error in pressure drop resulting from assuming that air is incompressible. With reasonably small loss coefficients and the accuracy that is usually required in most calculations, compressible fluids may be treated as incompressible for velocities less than Mach 0.2.
Standard

Air Quality for Commercial Aircraft Cabin Particulate Contaminants

2018-10-17
WIP
AIR4766/1A
This SAE Aerospace Information Report (AIR) covers airbone particulate contaminants that may be present in commercial aircraft cabin air during operation. Discussions cover sources of contaminants, methods of control and design recommendations. Air quality, ventilation requirements and standards are also discussed.
Standard

Aircraft Compartment Automatic Temperature Control Systems

2018-09-24
WIP
ARP89E
The recommendations of this SAE Aerospace Recommended Practice (ARP) for aircraft compartment automatic temperature control systems are primarily intended to be applicable to occupied or unoccupied compartments of civil and military aircraft.
Standard

Aircraft Cabin Pressurization Criteria

2017-04-10
WIP
ARP1270C
This ARP covers the basic criteria for the design of cabin pressure control systems (CPCS) for general aviation, commercial and military pressurized aircraft.
Standard

Environmental Control Systems Life Cycle Cost

2017-02-07
CURRENT
AIR1812B
This report contains background information on life cycle cost elements and key ECS cost factors. Elements of life cycle costs are defined from initial design phases through operational use. Information on how ECS designs affect overall aircraft cost and information on primary factors affecting ECS costs are discussed. Key steps or efforts for comparing ECS designs on the basis of LCC are outlined. Brief descriptions of two computer programs for estimating LCC of total aircraft programs and their use to estimate ECS LCC, are included.
Standard

Compartment Decompression Analysis

2017-01-05
CURRENT
AIR5661A
This SAE Aerospace Information Report (AIR) provides data and general analysis methods for calculation of internal and external, pressurized and unpressurized airplane compartment pressures during rapid discharge of cabin pressure. References to the applicable current FAA and EASA rules and advisory material are provided. While rules and interpretations can be expected to evolve, numerous airplanes have been approved under current and past rules that will have a continuing need for analysis of production and field modifications, alterations and repairs. The data and basic principles provided by this report are adaptable to any compartment decompression analysis requirement.
Standard

Engine Bleed Air Systems for Aircraft

2015-07-13
CURRENT
ARP1796B
This SAE Aerospace Recommended Practice (ARP) discusses design philosophy, system and equipment requirements, installation environment and design considerations for military and commercial aircraft systems within the Air Transport Association (ATA) ATA 100 specification, Chapter 36, Pneumatic. This ATA system/chapter covers equipment used to deliver compressed air from a power source to connecting points for other systems such as air conditioning, pressurization, ice protection, cross-engine starting, air turbine motors, air driven hydraulic pumps, on board oxygen generating systems (OBOGS), on board inert gas generating systems (OBIGGS), and other pneumatic demands. The engine bleed air system includes components for preconditioning the compressed air (temperature, pressure or flow regulation), ducting to distribute high or low pressure air to the using systems, and sensors/instruments to indicate temperature and pressure levels within the system.
Standard

Guide for Qualification Testing of Aircraft Air Valves

2015-05-29
CURRENT
ARP986D
This SAE Aerospace Recommended Practice (ARP) defines recommended analysis and test procedures for qualification of pneumatically, electrically, manually, and hydraulically actuated air valves. They may be further defined as valves that function in response to externally applied forces or in response to variations in upstream and/or downstream duct air conditions in order to maintain a calibrated duct air condition (e.g., air flow, air pressure, air temperature, air pressure ratio, or air shutoff). Qualification testing performed on the airplane to verify compatibility of the valve function and stability as part of a complete system is outside the scope of this document. Refer to ARP1270 for design and certification requirements for cabin pressurization control system components. As this document is only a guide, it does not supersede or relieve any requirements contained in detailed Customer specifications.
Standard

Airborne Chemicals in Aircraft Cabins

2014-09-26
WIP
AIR4766/2A
This SAE Aerospace Information Report (AIR) provides information on aircraft cabin air quality, including: - Airborne contaminant gases, vapors, and aerosols. - Identified potential sources. - Comfort, health and safety issues. - Airborne chemical measurement. - Regulations and standards. - Operating conditions and equipment that may cause aircraft cabin contamination by airborne chemicals (including Failure Conditions and normal Commercial Practices). - Airborne chemical control systems. It does not deal with airflow requirements.
Standard

NBC Protection Considerations for ECS Design

2014-07-01
CURRENT
AIR4362A
This SAE Aerospace Information Report (AIR) provides Nuclear, Biological and Chemical (NBC) protection considerations for environmental control system (ECS) design. It is intended to familiarize the ECS designer with the subject in order to know what information will be required to do an ECS design where NBC protection is a requirement. This is not intended to be a thorough discussion of NBC protection. Such a document would be large and would be classified. Topics of NBC protection that are more pertinent to the ECS designer are discussed in more detail. Those of peripheral interest, but of which the ECS designer should be aware are briefly discussed. Only radiological aspects of nuclear blast are discussed. The term CBR (Chemical, Biological, and Radiological) has been used to contrast with NBC to indicate that only the radiological aspects of a nuclear blast are being discussed.
Standard

Air Cycle Air Conditioning Systems for Military Air Vehicles

2013-08-06
HISTORICAL
AS4073A
This SAE Aerospace Standard (AS) defines the requirements for air cycle air conditioning systems used on military air vehicles for cooling, heating, ventilation, and moisture and contamination control. General recommendations for an air conditioning system, which may include an air cycle system as a cooling source, are included in MIL-E-18927E (AS) and JSSG-2009. Air cycle air conditioning systems include those components which condition high temperature and high pressure air for delivery to occupied and equipment compartments and to electrical and electronic equipment. This document is applicable to open and closed loop air cycle systems. Definitions are contained in Section 5 of this document.
Standard

Heater, Aircraft Internal Combustion Heat Exchanger Type

2013-02-14
HISTORICAL
AS8040B
This SAE Aerospace Standard (AS) covers combustion heaters used in the following applications: a Cabin heating (all occupied regions and windshield heating) b Wing and empennage anti-icing c Engine and accessory heating (when heater is installed as part of the aircraft) d Aircraft de-icing
Standard

Spacecraft Life Support Systems

2012-10-15
CURRENT
AIR1168/14A
A life support system (LSS) is usually defined as a system that provides elements necessary for maintaining human life and health in the state required for performing a prescribed mission. The LSS, depending upon specific design requirements, will provide pressure, temperature, and composition of local atmosphere, food, and water. It may or may not collect, dispose, or reprocess wastes such as carbon dioxide, water vapor, urine, and feces. It can be seen from the preceding definition that LSS requirements may differ widely, depending on the mission specified, such as operation in Earth orbit or lunar mission. In all cases the time of operation is an important design factor. An LSS is sometimes briefly defined as a system providing atmospheric control and water, waste, and thermal management.
Standard

Aerospace Vehicle Cryogenic Duct Systems

2011-08-10
CURRENT
ARP735A
This Aerospace Recommended Practice outlines the design, installation, testing and field maintenance criteria for aerospace vehicle cryogenic duct systems. These recommendations are considered currently applicable guides and are subject to revision due to the continuing development within industry.
Standard

Aerothermodynamic Test Instrumentation and Measurement

2011-07-25
CURRENT
AIR1168/5A
Like the technologies to which it contributes, the science of instrumentation seems to be expanding to unlimited proportions. In considering instrumentation techniques, primary emphasis was given in this section to the fundamentals of pressure, temperature, and flow measurement. Accent was placed on common measurement methods, such as manometers, thermocouples, and head meters, rather than on difficult and specialized techniques. Icing, humidity, velocity, and other special measurements were touched on briefly. Many of the references cited were survey articles or texts containing excellent bibliographies to assist a more detailed study where required.
Standard

Aircraft Fuel Weight Penalty Due to Air Conditioning

2011-07-25
CURRENT
AIR1168/8A
The purpose of this section is to provide methods and a set of convenient working charts to estimate penalty values in terms of take-off fuel weight for any given airplane mission. The curves are for a range of specific fuel consumption (SFC) and lift/drag ratio (L/D) compatible with the jet engines and supersonic aircraft currently being developed. A typical example showing use of the charts for an air conditioning system is given. Evaluation of the penalty imposed on aircraft performance characteristics by the installation of an air conditioning system is important for two reasons: 1 It provides a common denominator for comparing systems in the preliminary design stage, thus aiding in the choice of system to be used. 2 It aids in pinpointing portions of existing systems where design improvements can be most readily achieved.
X